Matches in SemOpenAlex for { <https://semopenalex.org/work/W2788052809> ?p ?o ?g. }
- W2788052809 endingPage "45" @default.
- W2788052809 startingPage "32" @default.
- W2788052809 abstract "We modeled non-steady-state, fluid-assisted diffusion in a sheet plane, infinite cylinder and finite thin cylinder using analytical solutions of the diffusion equation and the experimental diffusivity of F-in-biotite. Diffusion experiments on natural biotite in the presence of hydrofluoric acid at 0.4 GPa and 650, 700, and 750 °C produced diffusive influx perpendicular to the c-axis. EPMA mapping and profiling allow us to define the following Arrhenius expression of F diffusion in biotite:D=7.04m2s×10−4×exp−221kJmolRT−1 The results yield the discrimination of a high-T homogenization domain where cooling paths continuously reequilibrate F-in-biotite, an intermediate-T zonation domain where cooling paths record F-in-biotite diffusion profiles and a low-T closure domain where F-in-biotite remains unchanged. The zonation domain significantly expands with increasing cooling rates and decreasing diffusion time. We systematically analyzed F-in-biotite with electron microprobe in samples collected along representative cross-sections within the Seridó Belt, northeastern Brazil. Its metasedimentary units reached upper amphibolite grade metamorphic conditions, with constant F-in-biotite (F ≈ 0.33 wt.%) in grains from mica schist and paragneiss. The Ti-in-biotite geothermometer yielded nearly constant temperatures around 623 °C. The F-in-biotite regional background values remain unchanged at the contact with the major Ediacaran F-rich Acari pluton. It indicates the absence of magmatic fluid influx into the host rocks and is evidence for a fluid-absent nature of melts. By contrast, the F-in-biotite of the metric mica schist enclaves within dykes and sills of Cambrian pegmatitic granites was reequilibrated by interaction with exsolved fluids. The Ti-in-biotite geothermometer indicates temperatures around 642 °C, and our model suggests 100 kyr as a minimal duration for fluid-rock interaction. The preservation of intra-grain F-in-biotite homogeneity requires fluid flux cessation before cooling or fluid-present cooling rates below 100 °C Myr−1. Higher cooling rates would generate F-in-biotite intra-grain zonation. At the contact with the pegmatitic granites, the metasedimentary rocks show meter-scale F-in-biotite gradients due to thermal profiles setting the fluid (fH2O/fHF) gradient. The preservation of such gradients is related to a relatively fast fluid flux episode compared to the overall duration of the elevated thermal profile. The absence of intra-grain zonation indicates that F-in-biotite re-equilibration was fast relative to that of the fluid flux duration. We found intra-grain F-in-biotite zonation within an orthogneiss sample from the Paleoproterozoic Caicó complex basement nearby the metasedimentary belt and intruded plutons. The fit of the natural profile by modeled profiles for cooling rates below 10 °C Myr−1, obtained from available Seridó Belt U-Pb and 40Ar/39Ar ages, indicates that the orthogneiss cooled from 475 °C. It suggests the existence of a thermal gradient as the inner part of the belt cooled from 623 °C." @default.
- W2788052809 created "2018-03-06" @default.
- W2788052809 creator A5022660896 @default.
- W2788052809 creator A5053097139 @default.
- W2788052809 creator A5068584776 @default.
- W2788052809 date "2018-04-01" @default.
- W2788052809 modified "2023-09-26" @default.
- W2788052809 title "Natural and experimental fluorine substitution in biotite: Implications for fluid-rock thermochronometry and application to the Seridó Belt, northeastern Brazil" @default.
- W2788052809 cites W1947555207 @default.
- W2788052809 cites W1968311094 @default.
- W2788052809 cites W1971410845 @default.
- W2788052809 cites W1975761678 @default.
- W2788052809 cites W1976594053 @default.
- W2788052809 cites W1977790092 @default.
- W2788052809 cites W1993818705 @default.
- W2788052809 cites W2000140582 @default.
- W2788052809 cites W2000272657 @default.
- W2788052809 cites W2000953417 @default.
- W2788052809 cites W2001792895 @default.
- W2788052809 cites W2005277626 @default.
- W2788052809 cites W2005740138 @default.
- W2788052809 cites W2006054477 @default.
- W2788052809 cites W2007765396 @default.
- W2788052809 cites W2014917631 @default.
- W2788052809 cites W2015443408 @default.
- W2788052809 cites W2017332662 @default.
- W2788052809 cites W2019199307 @default.
- W2788052809 cites W2020803911 @default.
- W2788052809 cites W2026239216 @default.
- W2788052809 cites W2027615258 @default.
- W2788052809 cites W2027918121 @default.
- W2788052809 cites W2029727465 @default.
- W2788052809 cites W2030526120 @default.
- W2788052809 cites W2031770668 @default.
- W2788052809 cites W2033953445 @default.
- W2788052809 cites W2041007525 @default.
- W2788052809 cites W2048414808 @default.
- W2788052809 cites W2061566645 @default.
- W2788052809 cites W2063401890 @default.
- W2788052809 cites W2067757897 @default.
- W2788052809 cites W2067802194 @default.
- W2788052809 cites W2069907646 @default.
- W2788052809 cites W2070391327 @default.
- W2788052809 cites W2071200026 @default.
- W2788052809 cites W2076152795 @default.
- W2788052809 cites W2077877492 @default.
- W2788052809 cites W2078313687 @default.
- W2788052809 cites W2081507714 @default.
- W2788052809 cites W2088586000 @default.
- W2788052809 cites W2090562894 @default.
- W2788052809 cites W2092372719 @default.
- W2788052809 cites W2093224480 @default.
- W2788052809 cites W2093846115 @default.
- W2788052809 cites W2103386842 @default.
- W2788052809 cites W2106769845 @default.
- W2788052809 cites W2108570256 @default.
- W2788052809 cites W2123218432 @default.
- W2788052809 cites W2124795218 @default.
- W2788052809 cites W2130281340 @default.
- W2788052809 cites W2134912235 @default.
- W2788052809 cites W2137413333 @default.
- W2788052809 cites W2142333519 @default.
- W2788052809 cites W2145726800 @default.
- W2788052809 cites W2167947976 @default.
- W2788052809 cites W2171451147 @default.
- W2788052809 cites W2333798769 @default.
- W2788052809 cites W2430444751 @default.
- W2788052809 cites W2460600588 @default.
- W2788052809 cites W2740463426 @default.
- W2788052809 cites W2073772085 @default.
- W2788052809 doi "https://doi.org/10.1016/j.chemgeo.2018.01.019" @default.
- W2788052809 hasPublicationYear "2018" @default.
- W2788052809 type Work @default.
- W2788052809 sameAs 2788052809 @default.
- W2788052809 citedByCount "7" @default.
- W2788052809 countsByYear W27880528092019 @default.
- W2788052809 countsByYear W27880528092021 @default.
- W2788052809 countsByYear W27880528092022 @default.
- W2788052809 countsByYear W27880528092023 @default.
- W2788052809 crossrefType "journal-article" @default.
- W2788052809 hasAuthorship W2788052809A5022660896 @default.
- W2788052809 hasAuthorship W2788052809A5053097139 @default.
- W2788052809 hasAuthorship W2788052809A5068584776 @default.
- W2788052809 hasBestOaLocation W27880528091 @default.
- W2788052809 hasConcept C101139013 @default.
- W2788052809 hasConcept C127313418 @default.
- W2788052809 hasConcept C138411078 @default.
- W2788052809 hasConcept C151730666 @default.
- W2788052809 hasConcept C171701179 @default.
- W2788052809 hasConcept C17409809 @default.
- W2788052809 hasConcept C180785854 @default.
- W2788052809 hasConcept C199289684 @default.
- W2788052809 hasConcept C26687426 @default.
- W2788052809 hasConcept C2777229588 @default.
- W2788052809 hasConcept C2779870107 @default.
- W2788052809 hasConceptScore W2788052809C101139013 @default.
- W2788052809 hasConceptScore W2788052809C127313418 @default.
- W2788052809 hasConceptScore W2788052809C138411078 @default.