Matches in SemOpenAlex for { <https://semopenalex.org/work/W2788125618> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2788125618 endingPage "528" @default.
- W2788125618 startingPage "522" @default.
- W2788125618 abstract "One of the fundamental challenges in anatomical landmark detection, based on deep neural networks, is the constrained availability of medical imaging data for network mastering. To address this trouble, we present a two-stage task-oriented deep learning method to detect big-scale anatomical landmarks simultaneously in actual time using restrained education statistics. Especially, our technique includes deep convolutional neural networks (CNN), with every specializing in one particular project. In particular, to alleviate the trouble of limited training statistics, within the first stage, we endorse a CNN primarily based regression model the use of millions of image patches as input, aiming to examine inherent associations between nearby photo patches and target anatomical landmarks. to similarly version the correlations amongst image patches, in the second stage, we expand some other CNN model, which includes a) a fully convolutional networks (FCN) that shares the same architecture and community weights as the CNN used within the first stage and additionally b) numerous more layers to at the same time predict coordinates of a couple of anatomical landmarks. Importantly, our technique can jointly locate big-scale (e.g. hundreds of) landmarks in actual time. Using these landmark points we extract HOG and longitudinal features and using SVM to diagnose the Alzheimer’s disease." @default.
- W2788125618 created "2018-03-06" @default.
- W2788125618 creator A5011396415 @default.
- W2788125618 creator A5021449383 @default.
- W2788125618 creator A5054673202 @default.
- W2788125618 date "2018-09-02" @default.
- W2788125618 modified "2023-09-24" @default.
- W2788125618 title "CNN Based Landmark Detection and Alzheimer’s Diagnosis Using Landmark Feature" @default.
- W2788125618 hasPublicationYear "2018" @default.
- W2788125618 type Work @default.
- W2788125618 sameAs 2788125618 @default.
- W2788125618 citedByCount "1" @default.
- W2788125618 countsByYear W27881256182021 @default.
- W2788125618 crossrefType "journal-article" @default.
- W2788125618 hasAuthorship W2788125618A5011396415 @default.
- W2788125618 hasAuthorship W2788125618A5021449383 @default.
- W2788125618 hasAuthorship W2788125618A5054673202 @default.
- W2788125618 hasConcept C108583219 @default.
- W2788125618 hasConcept C119857082 @default.
- W2788125618 hasConcept C138885662 @default.
- W2788125618 hasConcept C153180895 @default.
- W2788125618 hasConcept C154945302 @default.
- W2788125618 hasConcept C205649164 @default.
- W2788125618 hasConcept C2776401178 @default.
- W2788125618 hasConcept C2778755073 @default.
- W2788125618 hasConcept C2780297707 @default.
- W2788125618 hasConcept C31972630 @default.
- W2788125618 hasConcept C41008148 @default.
- W2788125618 hasConcept C41895202 @default.
- W2788125618 hasConcept C58640448 @default.
- W2788125618 hasConcept C81363708 @default.
- W2788125618 hasConceptScore W2788125618C108583219 @default.
- W2788125618 hasConceptScore W2788125618C119857082 @default.
- W2788125618 hasConceptScore W2788125618C138885662 @default.
- W2788125618 hasConceptScore W2788125618C153180895 @default.
- W2788125618 hasConceptScore W2788125618C154945302 @default.
- W2788125618 hasConceptScore W2788125618C205649164 @default.
- W2788125618 hasConceptScore W2788125618C2776401178 @default.
- W2788125618 hasConceptScore W2788125618C2778755073 @default.
- W2788125618 hasConceptScore W2788125618C2780297707 @default.
- W2788125618 hasConceptScore W2788125618C31972630 @default.
- W2788125618 hasConceptScore W2788125618C41008148 @default.
- W2788125618 hasConceptScore W2788125618C41895202 @default.
- W2788125618 hasConceptScore W2788125618C58640448 @default.
- W2788125618 hasConceptScore W2788125618C81363708 @default.
- W2788125618 hasIssue "1" @default.
- W2788125618 hasLocation W27881256181 @default.
- W2788125618 hasOpenAccess W2788125618 @default.
- W2788125618 hasPrimaryLocation W27881256181 @default.
- W2788125618 hasRelatedWork W2267347828 @default.
- W2788125618 hasRelatedWork W2525974879 @default.
- W2788125618 hasRelatedWork W2526019331 @default.
- W2788125618 hasRelatedWork W2526653212 @default.
- W2788125618 hasRelatedWork W2527787998 @default.
- W2788125618 hasRelatedWork W2581775288 @default.
- W2788125618 hasRelatedWork W2724710774 @default.
- W2788125618 hasRelatedWork W2786622278 @default.
- W2788125618 hasRelatedWork W2793805028 @default.
- W2788125618 hasRelatedWork W2813288168 @default.
- W2788125618 hasRelatedWork W2909495206 @default.
- W2788125618 hasRelatedWork W2950395616 @default.
- W2788125618 hasRelatedWork W2964290592 @default.
- W2788125618 hasRelatedWork W2980959834 @default.
- W2788125618 hasRelatedWork W3013862785 @default.
- W2788125618 hasRelatedWork W3035565332 @default.
- W2788125618 hasRelatedWork W3113260897 @default.
- W2788125618 hasRelatedWork W3165737610 @default.
- W2788125618 hasRelatedWork W3207796407 @default.
- W2788125618 hasRelatedWork W2819870915 @default.
- W2788125618 hasVolume "4" @default.
- W2788125618 isParatext "false" @default.
- W2788125618 isRetracted "false" @default.
- W2788125618 magId "2788125618" @default.
- W2788125618 workType "article" @default.