Matches in SemOpenAlex for { <https://semopenalex.org/work/W2788189845> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2788189845 abstract "The thesis studies: (i) the methods for failure analysis of solids and structures, and (ii) the embedded strong discontinuity finite elements for modelling material failures in quasi brittle 2d solids. As for the failure analysis, the consistently linearized path-following method with quadratic constraint equation is first presented and studied in detail. The derived path-following method can be applied in the nonlinear finite element analysis of solids and structures in order to compute a highly nonlinear solution path. However, when analysing the nonlinear problems with the localized material failures (i.e. material softening), standard path-following methods can fail. For this reason we derived new versions of the path-following method, with other constraint functions, more suited for problems that take into account localized material failures. One version is based on adaptive one-degree-of-freedom constraint equation, which proved to be relatively successful in analysing problems with the material softening that are modelled by the embedded-discontinuity finite elements. The other versions are based on controlling incremental plastic dissipation or plastic work in an inelastic structure. The dissipation due to crack opening and propagation, computed by e.g. embedded discontinuity finite elements, is taken into account. The advantages and disadvantages of the presented path-following methods with different constraint equations are discussed and illustrated on a set of numerical examples. As for the modelling material failures in quasi brittle 2d solids (e.g. concrete), several embedded strong discontinuity finite element formulations are derived and studied. The considered formulations are based either on: (a) classical displacement-based isoparametric quadrilateral finite element or (b) on quadrilateral finite element enhanced with incompatible displacements. In order to describe a crack formation and opening, the element kinematics is enhanced by four basic separation modes and related kinematic parameters. The interpolation functions that describe enhanced kinematics have a jump in displacements along the crack. Two possibilities were studied for deriving the operators in the local equilibrium equations that are responsible for relating the bulk stresses with the tractions in the crack. For the crack embedment, the major-principle-stress criterion was used, which is suitable for the quasi brittle materials. The normal and tangential cohesion tractions in the crack are described by two uncoupled, non-associative damage-softening constitutive relations. A new crack tracing algorithm is proposed for computation of crack propagation through the mesh. It allows for crack formation in several elements in a single solution increment. Results of a set of numerical examples are provided in order to assess the performance of derived embedded strong discontinuity quadrilateral finite element formulations, the crack tracing algorithm, and the solution methods." @default.
- W2788189845 created "2018-03-06" @default.
- W2788189845 creator A5075642953 @default.
- W2788189845 date "2017-01-01" @default.
- W2788189845 modified "2023-09-23" @default.
- W2788189845 title "Solution methods for failure analysis of massive structural elements : doctoral thesis" @default.
- W2788189845 hasPublicationYear "2017" @default.
- W2788189845 type Work @default.
- W2788189845 sameAs 2788189845 @default.
- W2788189845 citedByCount "0" @default.
- W2788189845 crossrefType "dissertation" @default.
- W2788189845 hasAuthorship W2788189845A5075642953 @default.
- W2788189845 hasConcept C121332964 @default.
- W2788189845 hasConcept C127413603 @default.
- W2788189845 hasConcept C129844170 @default.
- W2788189845 hasConcept C134306372 @default.
- W2788189845 hasConcept C135402231 @default.
- W2788189845 hasConcept C135628077 @default.
- W2788189845 hasConcept C136478896 @default.
- W2788189845 hasConcept C158622935 @default.
- W2788189845 hasConcept C159985019 @default.
- W2788189845 hasConcept C192562407 @default.
- W2788189845 hasConcept C199360897 @default.
- W2788189845 hasConcept C2524010 @default.
- W2788189845 hasConcept C2776036281 @default.
- W2788189845 hasConcept C2777042112 @default.
- W2788189845 hasConcept C2777735758 @default.
- W2788189845 hasConcept C28826006 @default.
- W2788189845 hasConcept C33923547 @default.
- W2788189845 hasConcept C41008148 @default.
- W2788189845 hasConcept C62520636 @default.
- W2788189845 hasConcept C66938386 @default.
- W2788189845 hasConcept C97355855 @default.
- W2788189845 hasConceptScore W2788189845C121332964 @default.
- W2788189845 hasConceptScore W2788189845C127413603 @default.
- W2788189845 hasConceptScore W2788189845C129844170 @default.
- W2788189845 hasConceptScore W2788189845C134306372 @default.
- W2788189845 hasConceptScore W2788189845C135402231 @default.
- W2788189845 hasConceptScore W2788189845C135628077 @default.
- W2788189845 hasConceptScore W2788189845C136478896 @default.
- W2788189845 hasConceptScore W2788189845C158622935 @default.
- W2788189845 hasConceptScore W2788189845C159985019 @default.
- W2788189845 hasConceptScore W2788189845C192562407 @default.
- W2788189845 hasConceptScore W2788189845C199360897 @default.
- W2788189845 hasConceptScore W2788189845C2524010 @default.
- W2788189845 hasConceptScore W2788189845C2776036281 @default.
- W2788189845 hasConceptScore W2788189845C2777042112 @default.
- W2788189845 hasConceptScore W2788189845C2777735758 @default.
- W2788189845 hasConceptScore W2788189845C28826006 @default.
- W2788189845 hasConceptScore W2788189845C33923547 @default.
- W2788189845 hasConceptScore W2788189845C41008148 @default.
- W2788189845 hasConceptScore W2788189845C62520636 @default.
- W2788189845 hasConceptScore W2788189845C66938386 @default.
- W2788189845 hasConceptScore W2788189845C97355855 @default.
- W2788189845 hasLocation W27881898451 @default.
- W2788189845 hasOpenAccess W2788189845 @default.
- W2788189845 hasPrimaryLocation W27881898451 @default.
- W2788189845 hasRelatedWork W1511727109 @default.
- W2788189845 hasRelatedWork W1975523366 @default.
- W2788189845 hasRelatedWork W1988689854 @default.
- W2788189845 hasRelatedWork W2052432873 @default.
- W2788189845 hasRelatedWork W2057175254 @default.
- W2788189845 hasRelatedWork W2086758855 @default.
- W2788189845 hasRelatedWork W2095074458 @default.
- W2788189845 hasRelatedWork W2101149480 @default.
- W2788189845 hasRelatedWork W2388837856 @default.
- W2788189845 hasRelatedWork W2394925325 @default.
- W2788189845 hasRelatedWork W2545351267 @default.
- W2788189845 hasRelatedWork W2569869060 @default.
- W2788189845 hasRelatedWork W2613928464 @default.
- W2788189845 hasRelatedWork W2733537794 @default.
- W2788189845 hasRelatedWork W2895384000 @default.
- W2788189845 hasRelatedWork W3171766752 @default.
- W2788189845 hasRelatedWork W8066800 @default.
- W2788189845 hasRelatedWork W969067 @default.
- W2788189845 hasRelatedWork W1555507255 @default.
- W2788189845 hasRelatedWork W2608203252 @default.
- W2788189845 isParatext "false" @default.
- W2788189845 isRetracted "false" @default.
- W2788189845 magId "2788189845" @default.
- W2788189845 workType "dissertation" @default.