Matches in SemOpenAlex for { <https://semopenalex.org/work/W2788246898> ?p ?o ?g. }
- W2788246898 abstract "In the Group Steiner Tree problem (GST), we are given a (vertex or edge)-weighted graph $G=(V,E)$ on $n$ vertices, a root vertex $r$ and a collection of groups ${S_i}_{iin[h]}: S_isubseteq V(G)$. The goal is to find a min-cost subgraph $H$ that connects the root to every group. We consider a fault-tolerant variant of GST, which we call Restricted (Rooted) Group SNDP. In this setting, each group $S_i$ has a demand $k_iin[k],kinmathbb N$, and we wish to find a min-cost $Hsubseteq G$ such that, for each group $S_i$, there is a vertex in $S_i$ connected to the root via $k_i$ (vertex or edge) disjoint paths. While GST admits $O(log^2 nlog h)$ approximation, its high connectivity variants are Label-Cover hard, and for the vertex-weighted version, the hardness holds even when $k=2$. Previously, positive results were known only for the edge-weighted version when $k=2$ [Gupta et al., SODA 2010; Khandekar et al., Theor. Comput. Sci., 2012] and for a relaxed variant where the disjoint paths may end at different vertices in a group [Chalermsook et al., SODA 2015]. Our main result is an $O(log nlog h)$ approximation for Restricted Group SNDP that runs in time $n^{f(k, w)}$, where $w$ is the treewidth of $G$. This nearly matches the lower bound when $k$ and $w$ are constant. The key to achieving this result is a non-trivial extension of the framework in [Chalermsook et al., SODA 2017], which embeds all feasible solutions to the problem into a dynamic program (DP) table. However, finding the optimal solution in the DP table remains intractable. We formulate a linear program relaxation for the DP and obtain an approximate solution via randomized rounding. This framework also allows us to systematically construct DP tables for high-connectivity problems. As a result, we present new exact algorithms for several variants of survivable network design problems in low-treewidth graphs." @default.
- W2788246898 created "2018-03-06" @default.
- W2788246898 creator A5005632876 @default.
- W2788246898 creator A5010714334 @default.
- W2788246898 creator A5016828567 @default.
- W2788246898 creator A5064059676 @default.
- W2788246898 creator A5082853347 @default.
- W2788246898 date "2018-02-28" @default.
- W2788246898 modified "2023-10-06" @default.
- W2788246898 title "Survivable Network Design for Group Connectivity in Low-Treewidth Graphs" @default.
- W2788246898 cites W1554467813 @default.
- W2788246898 cites W1607394607 @default.
- W2788246898 cites W1836127928 @default.
- W2788246898 cites W1964535365 @default.
- W2788246898 cites W1972906866 @default.
- W2788246898 cites W2036652785 @default.
- W2788246898 cites W2037655022 @default.
- W2788246898 cites W2045749371 @default.
- W2788246898 cites W2051629298 @default.
- W2788246898 cites W2059273723 @default.
- W2788246898 cites W2131926707 @default.
- W2788246898 cites W2134293360 @default.
- W2788246898 cites W2152221184 @default.
- W2788246898 cites W2154257711 @default.
- W2788246898 cites W2157247984 @default.
- W2788246898 cites W2163546498 @default.
- W2788246898 cites W2167621755 @default.
- W2788246898 cites W2295961103 @default.
- W2788246898 cites W2569940161 @default.
- W2788246898 cites W2570206580 @default.
- W2788246898 cites W2610052675 @default.
- W2788246898 cites W2749358524 @default.
- W2788246898 cites W2951567887 @default.
- W2788246898 cites W2963693432 @default.
- W2788246898 cites W2610631890 @default.
- W2788246898 hasPublicationYear "2018" @default.
- W2788246898 type Work @default.
- W2788246898 sameAs 2788246898 @default.
- W2788246898 citedByCount "0" @default.
- W2788246898 crossrefType "posted-content" @default.
- W2788246898 hasAuthorship W2788246898A5005632876 @default.
- W2788246898 hasAuthorship W2788246898A5010714334 @default.
- W2788246898 hasAuthorship W2788246898A5016828567 @default.
- W2788246898 hasAuthorship W2788246898A5064059676 @default.
- W2788246898 hasAuthorship W2788246898A5082853347 @default.
- W2788246898 hasConcept C114614502 @default.
- W2788246898 hasConcept C118615104 @default.
- W2788246898 hasConcept C121332964 @default.
- W2788246898 hasConcept C132525143 @default.
- W2788246898 hasConcept C132569581 @default.
- W2788246898 hasConcept C134306372 @default.
- W2788246898 hasConcept C203776342 @default.
- W2788246898 hasConcept C2781311116 @default.
- W2788246898 hasConcept C33923547 @default.
- W2788246898 hasConcept C43517604 @default.
- W2788246898 hasConcept C45340560 @default.
- W2788246898 hasConcept C62520636 @default.
- W2788246898 hasConcept C63553672 @default.
- W2788246898 hasConcept C76220878 @default.
- W2788246898 hasConcept C77553402 @default.
- W2788246898 hasConcept C80899671 @default.
- W2788246898 hasConceptScore W2788246898C114614502 @default.
- W2788246898 hasConceptScore W2788246898C118615104 @default.
- W2788246898 hasConceptScore W2788246898C121332964 @default.
- W2788246898 hasConceptScore W2788246898C132525143 @default.
- W2788246898 hasConceptScore W2788246898C132569581 @default.
- W2788246898 hasConceptScore W2788246898C134306372 @default.
- W2788246898 hasConceptScore W2788246898C203776342 @default.
- W2788246898 hasConceptScore W2788246898C2781311116 @default.
- W2788246898 hasConceptScore W2788246898C33923547 @default.
- W2788246898 hasConceptScore W2788246898C43517604 @default.
- W2788246898 hasConceptScore W2788246898C45340560 @default.
- W2788246898 hasConceptScore W2788246898C62520636 @default.
- W2788246898 hasConceptScore W2788246898C63553672 @default.
- W2788246898 hasConceptScore W2788246898C76220878 @default.
- W2788246898 hasConceptScore W2788246898C77553402 @default.
- W2788246898 hasConceptScore W2788246898C80899671 @default.
- W2788246898 hasLocation W27882468981 @default.
- W2788246898 hasOpenAccess W2788246898 @default.
- W2788246898 hasPrimaryLocation W27882468981 @default.
- W2788246898 hasRelatedWork W1447961680 @default.
- W2788246898 hasRelatedWork W1483343493 @default.
- W2788246898 hasRelatedWork W1541319718 @default.
- W2788246898 hasRelatedWork W2023660553 @default.
- W2788246898 hasRelatedWork W2037065294 @default.
- W2788246898 hasRelatedWork W2138536745 @default.
- W2788246898 hasRelatedWork W2139547379 @default.
- W2788246898 hasRelatedWork W2293160748 @default.
- W2788246898 hasRelatedWork W2554706764 @default.
- W2788246898 hasRelatedWork W2569940161 @default.
- W2788246898 hasRelatedWork W2952768013 @default.
- W2788246898 hasRelatedWork W2953179414 @default.
- W2788246898 hasRelatedWork W2963282726 @default.
- W2788246898 hasRelatedWork W296387298 @default.
- W2788246898 hasRelatedWork W2963883886 @default.
- W2788246898 hasRelatedWork W2965947731 @default.
- W2788246898 hasRelatedWork W2982372708 @default.
- W2788246898 hasRelatedWork W3018226465 @default.
- W2788246898 hasRelatedWork W3021187640 @default.
- W2788246898 hasRelatedWork W3039916789 @default.