Matches in SemOpenAlex for { <https://semopenalex.org/work/W2788557475> ?p ?o ?g. }
- W2788557475 abstract "SUMMARY Cities support unique and valuable ecological communities, but understanding urban wildlife is limited due to the difficulties of assessing biodiversity. Ecoacoustic surveying is a useful way of assessing habitats, where biotic sound measured from audio recordings is used as a proxy for biodiversity. However, existing algorithms for measuring biotic sound have been shown to be biased by non-biotic sounds in recordings, typical of urban environments. We develop CityNet, a deep learning system using convolutional neural networks (CNNs), to measure audible biotic (CityBioNet) and anthropogenic (CityAnthroNet) acoustic activity in cities. The CNNs were trained on a large dataset of annotated audio recordings collected across Greater London, UK. Using a held-out test dataset, we compare the precision and recall of CityBioNet and CityAnthroNet separately to the best available alternative algorithms: four acoustic indices (AIs): Acoustic Complexity Index, Acoustic Diversity Index, Bioacoustic Index, and Normalised Difference Soundscape Index, and a state-of-the-art bird call detection CNN (bulbul). We also compare the effect of non-biotic sounds on the predictions of CityBioNet and bulbul. Finally we apply CityNet to describe acoustic patterns of the urban soundscape in two sites along an urbanisation gradient. CityBioNet was the best performing algorithm for measuring biotic activity in terms of precision and recall, followed by bulbul, while the AIs performed worst. CityAnthroNet outperformed the Normalised Difference Soundscape Index, but by a smaller margin than CityBioNet achieved against the competing algorithms. The CityBioNet predictions were impacted by mechanical sounds, whereas air traffic and wind sounds influenced the bulbul predictions. Across an urbanisation gradient, we show that CityNet produced realistic daily patterns of biotic and anthropogenic acoustic activity from real-world urban audio data. Using CityNet, it is possible to automatically measure biotic and anthropogenic acoustic activity in cities from audio recordings. If embedded within an autonomous sensing system, CityNet could produce environmental data for cites at large-scales and facilitate investigation of the impacts of anthropogenic activities on wildlife. The algorithms, code and pre-trained models are made freely available in combination with two expert-annotated urban audio datasets to facilitate automated environmental surveillance in cities." @default.
- W2788557475 created "2018-03-06" @default.
- W2788557475 creator A5020628605 @default.
- W2788557475 creator A5028022598 @default.
- W2788557475 creator A5035507668 @default.
- W2788557475 creator A5038405331 @default.
- W2788557475 creator A5044175783 @default.
- W2788557475 creator A5048918035 @default.
- W2788557475 date "2018-01-16" @default.
- W2788557475 modified "2023-10-16" @default.
- W2788557475 title "CityNet - Deep Learning Tools for Urban Ecoacoustic Assessment" @default.
- W2788557475 cites W1423594163 @default.
- W2788557475 cites W1611245111 @default.
- W2788557475 cites W1929763453 @default.
- W2788557475 cites W1994946700 @default.
- W2788557475 cites W2018140578 @default.
- W2788557475 cites W2020300735 @default.
- W2788557475 cites W2027080661 @default.
- W2788557475 cites W2028614599 @default.
- W2788557475 cites W2038484192 @default.
- W2788557475 cites W2039261343 @default.
- W2788557475 cites W2051576146 @default.
- W2788557475 cites W2056479357 @default.
- W2788557475 cites W2057914072 @default.
- W2788557475 cites W2058401212 @default.
- W2788557475 cites W2060240784 @default.
- W2788557475 cites W2094605934 @default.
- W2788557475 cites W2115796660 @default.
- W2788557475 cites W2119525517 @default.
- W2788557475 cites W2136738044 @default.
- W2788557475 cites W2186659481 @default.
- W2788557475 cites W2191779130 @default.
- W2788557475 cites W2327432707 @default.
- W2788557475 cites W2340594420 @default.
- W2788557475 cites W2518102674 @default.
- W2788557475 cites W2553440222 @default.
- W2788557475 cites W2725252010 @default.
- W2788557475 cites W2740570950 @default.
- W2788557475 cites W2763517524 @default.
- W2788557475 cites W2765532459 @default.
- W2788557475 cites W2771361008 @default.
- W2788557475 cites W2919115771 @default.
- W2788557475 cites W3106324661 @default.
- W2788557475 cites W935039750 @default.
- W2788557475 doi "https://doi.org/10.1101/248708" @default.
- W2788557475 hasPublicationYear "2018" @default.
- W2788557475 type Work @default.
- W2788557475 sameAs 2788557475 @default.
- W2788557475 citedByCount "2" @default.
- W2788557475 countsByYear W27885574752018 @default.
- W2788557475 countsByYear W27885574752020 @default.
- W2788557475 crossrefType "posted-content" @default.
- W2788557475 hasAuthorship W2788557475A5020628605 @default.
- W2788557475 hasAuthorship W2788557475A5028022598 @default.
- W2788557475 hasAuthorship W2788557475A5035507668 @default.
- W2788557475 hasAuthorship W2788557475A5038405331 @default.
- W2788557475 hasAuthorship W2788557475A5044175783 @default.
- W2788557475 hasAuthorship W2788557475A5048918035 @default.
- W2788557475 hasBestOaLocation W27885574751 @default.
- W2788557475 hasConcept C111368507 @default.
- W2788557475 hasConcept C119857082 @default.
- W2788557475 hasConcept C127313418 @default.
- W2788557475 hasConcept C130217890 @default.
- W2788557475 hasConcept C136764020 @default.
- W2788557475 hasConcept C142795923 @default.
- W2788557475 hasConcept C154945302 @default.
- W2788557475 hasConcept C18903297 @default.
- W2788557475 hasConcept C203718221 @default.
- W2788557475 hasConcept C2777382242 @default.
- W2788557475 hasConcept C2780148112 @default.
- W2788557475 hasConcept C39853841 @default.
- W2788557475 hasConcept C41008148 @default.
- W2788557475 hasConcept C53565203 @default.
- W2788557475 hasConcept C56978610 @default.
- W2788557475 hasConcept C86803240 @default.
- W2788557475 hasConceptScore W2788557475C111368507 @default.
- W2788557475 hasConceptScore W2788557475C119857082 @default.
- W2788557475 hasConceptScore W2788557475C127313418 @default.
- W2788557475 hasConceptScore W2788557475C130217890 @default.
- W2788557475 hasConceptScore W2788557475C136764020 @default.
- W2788557475 hasConceptScore W2788557475C142795923 @default.
- W2788557475 hasConceptScore W2788557475C154945302 @default.
- W2788557475 hasConceptScore W2788557475C18903297 @default.
- W2788557475 hasConceptScore W2788557475C203718221 @default.
- W2788557475 hasConceptScore W2788557475C2777382242 @default.
- W2788557475 hasConceptScore W2788557475C2780148112 @default.
- W2788557475 hasConceptScore W2788557475C39853841 @default.
- W2788557475 hasConceptScore W2788557475C41008148 @default.
- W2788557475 hasConceptScore W2788557475C53565203 @default.
- W2788557475 hasConceptScore W2788557475C56978610 @default.
- W2788557475 hasConceptScore W2788557475C86803240 @default.
- W2788557475 hasLocation W27885574751 @default.
- W2788557475 hasLocation W27885574752 @default.
- W2788557475 hasLocation W27885574753 @default.
- W2788557475 hasLocation W27885574754 @default.
- W2788557475 hasLocation W27885574755 @default.
- W2788557475 hasOpenAccess W2788557475 @default.
- W2788557475 hasPrimaryLocation W27885574751 @default.
- W2788557475 hasRelatedWork W2073714244 @default.
- W2788557475 hasRelatedWork W2333309537 @default.