Matches in SemOpenAlex for { <https://semopenalex.org/work/W2788608293> ?p ?o ?g. }
- W2788608293 endingPage "329" @default.
- W2788608293 startingPage "318" @default.
- W2788608293 abstract "Living organisms intertwine soft (e.g., muscle) and hard (e.g., bones) materials, giving them an intrinsic flexibility and resiliency often lacking in conventional rigid robots. The emerging field of soft robotics seeks to harness these same properties to create resilient machines. The nature of soft materials, however, presents considerable challenges to aspects of design, construction, and control—and up until now, the vast majority of gaits for soft robots have been hand-designed through empirical trial-and-error. This article describes an easy-to-assemble tensegrity-based soft robot capable of highly dynamic locomotive gaits and demonstrating structural and behavioral resilience in the face of physical damage. Enabling this is the use of a machine learning algorithm able to discover effective gaits with a minimal number of physical trials. These results lend further credence to soft-robotic approaches that seek to harness the interaction of complex material dynamics to generate a wealth of dynamical behaviors." @default.
- W2788608293 created "2018-03-06" @default.
- W2788608293 creator A5032227198 @default.
- W2788608293 creator A5082672818 @default.
- W2788608293 date "2018-06-01" @default.
- W2788608293 modified "2023-10-11" @default.
- W2788608293 title "Adaptive and Resilient Soft Tensegrity Robots" @default.
- W2788608293 cites W1481659984 @default.
- W2788608293 cites W1494192115 @default.
- W2788608293 cites W1502922572 @default.
- W2788608293 cites W1510052597 @default.
- W2788608293 cites W1588959822 @default.
- W2788608293 cites W1614964691 @default.
- W2788608293 cites W1738827650 @default.
- W2788608293 cites W1967742036 @default.
- W2788608293 cites W1970504153 @default.
- W2788608293 cites W1972565530 @default.
- W2788608293 cites W1976926002 @default.
- W2788608293 cites W1978161072 @default.
- W2788608293 cites W1982636603 @default.
- W2788608293 cites W1985412770 @default.
- W2788608293 cites W1992923590 @default.
- W2788608293 cites W1996028840 @default.
- W2788608293 cites W1996273048 @default.
- W2788608293 cites W1997733978 @default.
- W2788608293 cites W2001990009 @default.
- W2788608293 cites W2010745100 @default.
- W2788608293 cites W2011174137 @default.
- W2788608293 cites W2014975648 @default.
- W2788608293 cites W2018044188 @default.
- W2788608293 cites W2021446769 @default.
- W2788608293 cites W2024060531 @default.
- W2788608293 cites W2025613329 @default.
- W2788608293 cites W2025892496 @default.
- W2788608293 cites W2079218888 @default.
- W2788608293 cites W2090252028 @default.
- W2788608293 cites W2091118421 @default.
- W2788608293 cites W2091568354 @default.
- W2788608293 cites W2093229042 @default.
- W2788608293 cites W2115972257 @default.
- W2788608293 cites W2118177844 @default.
- W2788608293 cites W2127107099 @default.
- W2788608293 cites W2138537392 @default.
- W2788608293 cites W2143033417 @default.
- W2788608293 cites W2143958693 @default.
- W2788608293 cites W2149341969 @default.
- W2788608293 cites W2149475811 @default.
- W2788608293 cites W2152671441 @default.
- W2788608293 cites W2158200659 @default.
- W2788608293 cites W2160794671 @default.
- W2788608293 cites W2163566443 @default.
- W2788608293 cites W2192203593 @default.
- W2788608293 cites W2208154600 @default.
- W2788608293 cites W2270090518 @default.
- W2788608293 cites W2296124755 @default.
- W2788608293 cites W2479031788 @default.
- W2788608293 cites W2515930553 @default.
- W2788608293 cites W2964303882 @default.
- W2788608293 cites W2979063279 @default.
- W2788608293 cites W4250514268 @default.
- W2788608293 doi "https://doi.org/10.1089/soro.2017.0066" @default.
- W2788608293 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6001847" @default.
- W2788608293 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29664708" @default.
- W2788608293 hasPublicationYear "2018" @default.
- W2788608293 type Work @default.
- W2788608293 sameAs 2788608293 @default.
- W2788608293 citedByCount "74" @default.
- W2788608293 countsByYear W27886082932018 @default.
- W2788608293 countsByYear W27886082932019 @default.
- W2788608293 countsByYear W27886082932020 @default.
- W2788608293 countsByYear W27886082932021 @default.
- W2788608293 countsByYear W27886082932022 @default.
- W2788608293 countsByYear W27886082932023 @default.
- W2788608293 crossrefType "journal-article" @default.
- W2788608293 hasAuthorship W2788608293A5032227198 @default.
- W2788608293 hasAuthorship W2788608293A5082672818 @default.
- W2788608293 hasBestOaLocation W27886082931 @default.
- W2788608293 hasConcept C105795698 @default.
- W2788608293 hasConcept C107457646 @default.
- W2788608293 hasConcept C111919701 @default.
- W2788608293 hasConcept C119857082 @default.
- W2788608293 hasConcept C127413603 @default.
- W2788608293 hasConcept C133731056 @default.
- W2788608293 hasConcept C154945302 @default.
- W2788608293 hasConcept C159985019 @default.
- W2788608293 hasConcept C171250308 @default.
- W2788608293 hasConcept C179768478 @default.
- W2788608293 hasConcept C182950735 @default.
- W2788608293 hasConcept C192562407 @default.
- W2788608293 hasConcept C202444582 @default.
- W2788608293 hasConcept C2776058767 @default.
- W2788608293 hasConcept C2779513410 @default.
- W2788608293 hasConcept C2779585090 @default.
- W2788608293 hasConcept C2780598303 @default.
- W2788608293 hasConcept C2982836594 @default.
- W2788608293 hasConcept C33923547 @default.
- W2788608293 hasConcept C34413123 @default.
- W2788608293 hasConcept C41008148 @default.