Matches in SemOpenAlex for { <https://semopenalex.org/work/W2788650114> ?p ?o ?g. }
- W2788650114 abstract "We propose a hierarchical extension to hidden Markov model (HMM) under the Bayesian framework to overcome its limited model capacity. The model parameters are treated as random variables whose distributions are governed by hyperparameters. Therefore the variation in data can be modeled at both instance level and distribution level. We derive a novel learning method for estimating the parameters and hyperparameters of our model based on adversarial learning framework, which has shown promising results in generating photorealistic images and videos. We demonstrate the benefit of the proposed method on human motion capture data through comparison with both state-of-the-art methods and the same model that is learned by maximizing likelihood. The first experiment on reconstruction shows the model's capability of generalizing to novel testing data. The second experiment on synthesis shows the model's capability of generating realistic and diverse data." @default.
- W2788650114 created "2018-03-06" @default.
- W2788650114 creator A5076346273 @default.
- W2788650114 creator A5086031494 @default.
- W2788650114 date "2018-04-26" @default.
- W2788650114 modified "2023-10-06" @default.
- W2788650114 title "An Adversarial Hierarchical Hidden Markov Model for Human Pose Modeling and Generation" @default.
- W2788650114 cites W1501142324 @default.
- W2788650114 cites W1528056001 @default.
- W2788650114 cites W1636244751 @default.
- W2788650114 cites W1735317348 @default.
- W2788650114 cites W1884859883 @default.
- W2788650114 cites W2049633694 @default.
- W2788650114 cites W2076618452 @default.
- W2788650114 cites W2086509056 @default.
- W2788650114 cites W2099471712 @default.
- W2788650114 cites W2100969003 @default.
- W2788650114 cites W2110575115 @default.
- W2788650114 cites W2116435618 @default.
- W2788650114 cites W2119717200 @default.
- W2788650114 cites W2124609748 @default.
- W2788650114 cites W2125838338 @default.
- W2788650114 cites W2133665775 @default.
- W2788650114 cites W2142258645 @default.
- W2788650114 cites W2145195026 @default.
- W2788650114 cites W2147010501 @default.
- W2788650114 cites W2150616621 @default.
- W2788650114 cites W2152239535 @default.
- W2788650114 cites W2158164339 @default.
- W2788650114 cites W2158823144 @default.
- W2788650114 cites W2173520492 @default.
- W2788650114 cites W2293741035 @default.
- W2788650114 cites W2295661697 @default.
- W2788650114 cites W2470142083 @default.
- W2788650114 cites W2548275288 @default.
- W2788650114 cites W2557449848 @default.
- W2788650114 cites W2745124432 @default.
- W2788650114 cites W2949099979 @default.
- W2788650114 cites W2949999304 @default.
- W2788650114 cites W2951244767 @default.
- W2788650114 cites W2962695963 @default.
- W2788650114 cites W2963092440 @default.
- W2788650114 cites W2963279312 @default.
- W2788650114 cites W2963547393 @default.
- W2788650114 cites W2963800509 @default.
- W2788650114 cites W2963857374 @default.
- W2788650114 cites W2964245526 @default.
- W2788650114 doi "https://doi.org/10.1609/aaai.v32i1.11860" @default.
- W2788650114 hasPublicationYear "2018" @default.
- W2788650114 type Work @default.
- W2788650114 sameAs 2788650114 @default.
- W2788650114 citedByCount "6" @default.
- W2788650114 countsByYear W27886501142019 @default.
- W2788650114 countsByYear W27886501142021 @default.
- W2788650114 countsByYear W27886501142022 @default.
- W2788650114 countsByYear W27886501142023 @default.
- W2788650114 crossrefType "journal-article" @default.
- W2788650114 hasAuthorship W2788650114A5076346273 @default.
- W2788650114 hasAuthorship W2788650114A5086031494 @default.
- W2788650114 hasBestOaLocation W27886501141 @default.
- W2788650114 hasConcept C104114177 @default.
- W2788650114 hasConcept C107673813 @default.
- W2788650114 hasConcept C111350023 @default.
- W2788650114 hasConcept C119857082 @default.
- W2788650114 hasConcept C124101348 @default.
- W2788650114 hasConcept C144986985 @default.
- W2788650114 hasConcept C153180895 @default.
- W2788650114 hasConcept C154945302 @default.
- W2788650114 hasConcept C23224414 @default.
- W2788650114 hasConcept C41008148 @default.
- W2788650114 hasConcept C48007421 @default.
- W2788650114 hasConcept C8642999 @default.
- W2788650114 hasConceptScore W2788650114C104114177 @default.
- W2788650114 hasConceptScore W2788650114C107673813 @default.
- W2788650114 hasConceptScore W2788650114C111350023 @default.
- W2788650114 hasConceptScore W2788650114C119857082 @default.
- W2788650114 hasConceptScore W2788650114C124101348 @default.
- W2788650114 hasConceptScore W2788650114C144986985 @default.
- W2788650114 hasConceptScore W2788650114C153180895 @default.
- W2788650114 hasConceptScore W2788650114C154945302 @default.
- W2788650114 hasConceptScore W2788650114C23224414 @default.
- W2788650114 hasConceptScore W2788650114C41008148 @default.
- W2788650114 hasConceptScore W2788650114C48007421 @default.
- W2788650114 hasConceptScore W2788650114C8642999 @default.
- W2788650114 hasIssue "1" @default.
- W2788650114 hasLocation W27886501141 @default.
- W2788650114 hasOpenAccess W2788650114 @default.
- W2788650114 hasPrimaryLocation W27886501141 @default.
- W2788650114 hasRelatedWork W2788650114 @default.
- W2788650114 hasRelatedWork W2928521819 @default.
- W2788650114 hasRelatedWork W3115755817 @default.
- W2788650114 hasRelatedWork W3199608561 @default.
- W2788650114 hasRelatedWork W4210794429 @default.
- W2788650114 hasRelatedWork W4223456145 @default.
- W2788650114 hasRelatedWork W4283697347 @default.
- W2788650114 hasRelatedWork W4288375256 @default.
- W2788650114 hasRelatedWork W4295309597 @default.
- W2788650114 hasRelatedWork W4309113015 @default.
- W2788650114 hasVolume "32" @default.
- W2788650114 isParatext "false" @default.