Matches in SemOpenAlex for { <https://semopenalex.org/work/W2788894248> ?p ?o ?g. }
- W2788894248 endingPage "219" @default.
- W2788894248 startingPage "206" @default.
- W2788894248 abstract "<b><i>Background/Aims:</i></b> Chronic kidney disease (CKD) is often accompanied by hyperlipidemia, which accelerates progression of the disease. Podocyte injury can lead to dysfunction of the glomerular filtration barrier, which is associated with proteinuria, a risk marker for the progression of CKD. Our previous studies demonstrated that palmitic acid (PA) can induce podocyte apoptosis; however, the underlying mechanisms are unclear. In the present study, we investigated the specific molecular mechanisms of PA-induced apoptosis in cultured podocytes. <b><i>Methods:</i></b> We cultured mouse podocytes and treated them with PA. Then, cell viability was measured using the Cell Counting Kit-8 colorimetric assay, lipid uptake was assessed by Oil Red O staining and boron-dipyrromethene staining, apoptosis was measured by flow cytometry, mitochondrial injury was assessed by JC-1 staining and transmission electron microscopy, and mitochondrial production of reactive oxygen species (ROS) was evaluated by fluorescence microscopy using the MitoSOX Red reagent. The effects of PA on the mitochondria-mediated caspase activation pathway were investigated by examining the expression of caspase-8, cleaved caspase-9, cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), B-cell lymphoma 2 (Bcl-2), Bax, Bid, cytochrome <i>c</i>, and Fas-associated protein with death domain (FADD) using western blotting. The translocation of Bax and cytochrome <i>c</i> were detected by immunofluorescence. <b><i>Results:</i></b> PA treatment significantly increased lipid accumulation and induced podocyte apoptosis. We investigated whether the two primary apoptosis signaling pathways (death receptor-mediated pathway and mitochondria-mediated pathway) were involved in the execution of PA-induced podocyte apoptosis, and found that the levels of FADD, caspase-8, and Bid did not significantly change during this process. Meanwhile, PA treatment induced an increase in Bax protein expression and a decrease in Bcl-2 protein expression, with Bax translocation to the mitochondria. Furthermore, PA treatment induced mitochondrial impairment, and triggered the release of cytochrome <i>c</i> from the mitochondria to cytosol, with a concomitant dose-dependent increase in the levels of cleaved caspase-9, cleaved caspase-3, and PARP. Meanwhile, PA treatment increased mitochondrial production of ROS, and the mitochondria-targeted antioxidant mitoTEMPO significantly ameliorated PA-induced podocyte apoptosis. <b><i>Conclusion:</i></b> Our findings indicated that PA induced caspase-dependent podocyte apoptosis through the mitochondrial pathway, and mitochondrial ROS production participated in this process, thus potentially contributing to podocyte injury" @default.
- W2788894248 created "2018-03-06" @default.
- W2788894248 creator A5010002296 @default.
- W2788894248 creator A5012331274 @default.
- W2788894248 creator A5012402700 @default.
- W2788894248 creator A5021583132 @default.
- W2788894248 creator A5031095216 @default.
- W2788894248 creator A5055658604 @default.
- W2788894248 creator A5061944655 @default.
- W2788894248 creator A5062400680 @default.
- W2788894248 creator A5070898395 @default.
- W2788894248 date "2018-01-01" @default.
- W2788894248 modified "2023-10-16" @default.
- W2788894248 title "Palmitic Acid-Induced Podocyte Apoptosis via the Reactive Oxygen Species-Dependent Mitochondrial Pathway" @default.
- W2788894248 cites W1565570850 @default.
- W2788894248 cites W1966106271 @default.
- W2788894248 cites W1977049137 @default.
- W2788894248 cites W1977178308 @default.
- W2788894248 cites W1987001379 @default.
- W2788894248 cites W1989026904 @default.
- W2788894248 cites W1990328562 @default.
- W2788894248 cites W2001534373 @default.
- W2788894248 cites W2004556005 @default.
- W2788894248 cites W2008757142 @default.
- W2788894248 cites W2014626586 @default.
- W2788894248 cites W2022732349 @default.
- W2788894248 cites W2029988322 @default.
- W2788894248 cites W2036684416 @default.
- W2788894248 cites W2039480744 @default.
- W2788894248 cites W2047542439 @default.
- W2788894248 cites W2051050154 @default.
- W2788894248 cites W2061497413 @default.
- W2788894248 cites W2068429410 @default.
- W2788894248 cites W2069180528 @default.
- W2788894248 cites W2070936563 @default.
- W2788894248 cites W2072252062 @default.
- W2788894248 cites W2074305443 @default.
- W2788894248 cites W2077155600 @default.
- W2788894248 cites W2089067056 @default.
- W2788894248 cites W2097786201 @default.
- W2788894248 cites W2100990796 @default.
- W2788894248 cites W2126168209 @default.
- W2788894248 cites W2128730397 @default.
- W2788894248 cites W2132117066 @default.
- W2788894248 cites W2142109972 @default.
- W2788894248 cites W2164934883 @default.
- W2788894248 cites W2172162633 @default.
- W2788894248 cites W2254382629 @default.
- W2788894248 cites W2272315791 @default.
- W2788894248 cites W2278408231 @default.
- W2788894248 cites W2398954616 @default.
- W2788894248 cites W2530885898 @default.
- W2788894248 cites W2552554514 @default.
- W2788894248 cites W2564073655 @default.
- W2788894248 cites W2577981494 @default.
- W2788894248 cites W2587141314 @default.
- W2788894248 cites W2591410625 @default.
- W2788894248 cites W2601935112 @default.
- W2788894248 cites W2606357920 @default.
- W2788894248 cites W2610328326 @default.
- W2788894248 cites W2612484163 @default.
- W2788894248 cites W2765850147 @default.
- W2788894248 cites W2775289944 @default.
- W2788894248 doi "https://doi.org/10.1159/000487673" @default.
- W2788894248 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29490300" @default.
- W2788894248 hasPublicationYear "2018" @default.
- W2788894248 type Work @default.
- W2788894248 sameAs 2788894248 @default.
- W2788894248 citedByCount "33" @default.
- W2788894248 countsByYear W27888942482018 @default.
- W2788894248 countsByYear W27888942482019 @default.
- W2788894248 countsByYear W27888942482020 @default.
- W2788894248 countsByYear W27888942482021 @default.
- W2788894248 countsByYear W27888942482022 @default.
- W2788894248 countsByYear W27888942482023 @default.
- W2788894248 crossrefType "journal-article" @default.
- W2788894248 hasAuthorship W2788894248A5010002296 @default.
- W2788894248 hasAuthorship W2788894248A5012331274 @default.
- W2788894248 hasAuthorship W2788894248A5012402700 @default.
- W2788894248 hasAuthorship W2788894248A5021583132 @default.
- W2788894248 hasAuthorship W2788894248A5031095216 @default.
- W2788894248 hasAuthorship W2788894248A5055658604 @default.
- W2788894248 hasAuthorship W2788894248A5061944655 @default.
- W2788894248 hasAuthorship W2788894248A5062400680 @default.
- W2788894248 hasAuthorship W2788894248A5070898395 @default.
- W2788894248 hasBestOaLocation W27888942481 @default.
- W2788894248 hasConcept C134018914 @default.
- W2788894248 hasConcept C153911025 @default.
- W2788894248 hasConcept C185592680 @default.
- W2788894248 hasConcept C190283241 @default.
- W2788894248 hasConcept C2777146197 @default.
- W2788894248 hasConcept C2779561371 @default.
- W2788894248 hasConcept C2780091579 @default.
- W2788894248 hasConcept C29311851 @default.
- W2788894248 hasConcept C48349386 @default.
- W2788894248 hasConcept C53227056 @default.
- W2788894248 hasConcept C55493867 @default.
- W2788894248 hasConcept C86803240 @default.