Matches in SemOpenAlex for { <https://semopenalex.org/work/W2788897548> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2788897548 abstract "It is common practice to develop artificial neural network models using location-based single dataset for both the training and testing. Based on this procedure, the developed models may perform poorly outside the training location. Therefore, this study aims at developing generalized higher-order neural network (GHNN) models for estimating pan evaporation (E p) using pooled climate data of different locations under four agro-ecological regions in India. The inputs for the development of GHNN models include different combinations of daily climate data such as air temperature, relative humidity, wind speed, and solar radiation. Comparisons of developed GHNNs were made with the generalized first-order neural network (GFNN) and generalized multi-linear regression (GMLR) models. It is concluded that the GHNNs along with GFNNs performed better than the GMLR models. Further, GHNNs were applied to model development and model testing locations to test the generalizing capability. The testing results suggest that the GHNN models have a good generalizing capability." @default.
- W2788897548 created "2018-03-06" @default.
- W2788897548 creator A5007383241 @default.
- W2788897548 creator A5030009364 @default.
- W2788897548 creator A5071887901 @default.
- W2788897548 date "2018-01-01" @default.
- W2788897548 modified "2023-09-22" @default.
- W2788897548 title "Development of Generalized Higher-Order Neural Network-Based Models for Estimating Pan Evaporation" @default.
- W2788897548 cites W1964445968 @default.
- W2788897548 cites W1975336843 @default.
- W2788897548 cites W1975940830 @default.
- W2788897548 cites W1984457886 @default.
- W2788897548 cites W1991287071 @default.
- W2788897548 cites W2007181090 @default.
- W2788897548 cites W2010004439 @default.
- W2788897548 cites W2018704760 @default.
- W2788897548 cites W2032734256 @default.
- W2788897548 cites W2035058555 @default.
- W2788897548 cites W2035760979 @default.
- W2788897548 cites W2043725266 @default.
- W2788897548 cites W2046863487 @default.
- W2788897548 cites W2055107850 @default.
- W2788897548 cites W2081830062 @default.
- W2788897548 cites W2106489581 @default.
- W2788897548 cites W2112446937 @default.
- W2788897548 cites W2115322028 @default.
- W2788897548 cites W2145692638 @default.
- W2788897548 cites W2152236704 @default.
- W2788897548 cites W2170326071 @default.
- W2788897548 cites W4248510537 @default.
- W2788897548 doi "https://doi.org/10.1007/978-981-10-5801-1_5" @default.
- W2788897548 hasPublicationYear "2018" @default.
- W2788897548 type Work @default.
- W2788897548 sameAs 2788897548 @default.
- W2788897548 citedByCount "2" @default.
- W2788897548 countsByYear W27888975482018 @default.
- W2788897548 countsByYear W27888975482019 @default.
- W2788897548 crossrefType "book-chapter" @default.
- W2788897548 hasAuthorship W2788897548A5007383241 @default.
- W2788897548 hasAuthorship W2788897548A5030009364 @default.
- W2788897548 hasAuthorship W2788897548A5071887901 @default.
- W2788897548 hasConcept C119857082 @default.
- W2788897548 hasConcept C153294291 @default.
- W2788897548 hasConcept C154945302 @default.
- W2788897548 hasConcept C161067210 @default.
- W2788897548 hasConcept C205649164 @default.
- W2788897548 hasConcept C23430798 @default.
- W2788897548 hasConcept C41008148 @default.
- W2788897548 hasConcept C50644808 @default.
- W2788897548 hasConcept C61441594 @default.
- W2788897548 hasConceptScore W2788897548C119857082 @default.
- W2788897548 hasConceptScore W2788897548C153294291 @default.
- W2788897548 hasConceptScore W2788897548C154945302 @default.
- W2788897548 hasConceptScore W2788897548C161067210 @default.
- W2788897548 hasConceptScore W2788897548C205649164 @default.
- W2788897548 hasConceptScore W2788897548C23430798 @default.
- W2788897548 hasConceptScore W2788897548C41008148 @default.
- W2788897548 hasConceptScore W2788897548C50644808 @default.
- W2788897548 hasConceptScore W2788897548C61441594 @default.
- W2788897548 hasLocation W27888975481 @default.
- W2788897548 hasOpenAccess W2788897548 @default.
- W2788897548 hasPrimaryLocation W27888975481 @default.
- W2788897548 hasRelatedWork W2014264352 @default.
- W2788897548 hasRelatedWork W2049595937 @default.
- W2788897548 hasRelatedWork W2302179467 @default.
- W2788897548 hasRelatedWork W2497210317 @default.
- W2788897548 hasRelatedWork W2522728909 @default.
- W2788897548 hasRelatedWork W2729160391 @default.
- W2788897548 hasRelatedWork W2742315336 @default.
- W2788897548 hasRelatedWork W2799456846 @default.
- W2788897548 hasRelatedWork W2838716093 @default.
- W2788897548 hasRelatedWork W2886641856 @default.
- W2788897548 hasRelatedWork W2962843543 @default.
- W2788897548 hasRelatedWork W2979463462 @default.
- W2788897548 hasRelatedWork W2993676729 @default.
- W2788897548 hasRelatedWork W3006608465 @default.
- W2788897548 hasRelatedWork W3011751278 @default.
- W2788897548 hasRelatedWork W3125213835 @default.
- W2788897548 hasRelatedWork W3127183703 @default.
- W2788897548 hasRelatedWork W3170726110 @default.
- W2788897548 hasRelatedWork W3199051246 @default.
- W2788897548 hasRelatedWork W2189168596 @default.
- W2788897548 isParatext "false" @default.
- W2788897548 isRetracted "false" @default.
- W2788897548 magId "2788897548" @default.
- W2788897548 workType "book-chapter" @default.