Matches in SemOpenAlex for { <https://semopenalex.org/work/W2788922182> ?p ?o ?g. }
- W2788922182 endingPage "856" @default.
- W2788922182 startingPage "828" @default.
- W2788922182 abstract "Purpose The purpose of this study is to introduce the reproducing kernel algorithm for treating classes of time-fractional partial differential equations subject to Robin boundary conditions with parameters derivative arising in fluid flows, fluid dynamics, groundwater hydrology, conservation of energy, heat conduction and electric circuit. Design/methodology/approach The method provides appropriate representation of the solutions in convergent series formula with accurately computable components. This representation is given in the W ( Ω ) and H ( Ω ) inner product spaces, while the computation of the required grid points relies on the R ( y , s ) ( x , t ) and r ( y , s ) ( x , t ) reproducing kernel functions. Findings Numerical simulation with different order derivatives degree is done including linear and nonlinear terms that are acquired by interrupting the n -term of the exact solutions. Computational results showed that the proposed algorithm is competitive in terms of the quality of the solutions found and is very valid for solving such time-fractional models. Research limitations/implications Future work includes the application of the reproducing kernel algorithm to highly nonlinear time-fractional partial differential equations such as those arising in single and multiphase flows. The results will be published in forthcoming papers. Practical implications The study included a description of fundamental reproducing kernel algorithm and the concepts of convergence, and error behavior for the reproducing kernel algorithm solvers. Results obtained by the proposed algorithm are found to outperform in terms of accuracy, generality and applicability. Social implications Developing analytical and numerical methods for the solutions of time-fractional partial differential equations is a very important task owing to their practical interest. Originality/value This study, for the first time, presents reproducing kernel algorithm for obtaining the numerical solutions of some certain classes of Robin time-fractional partial differential equations. An efficient construction is provided to obtain the numerical solutions for the equations, along with an existence proof of the exact solutions based upon the reproducing kernel theory." @default.
- W2788922182 created "2018-03-06" @default.
- W2788922182 creator A5081806740 @default.
- W2788922182 date "2018-04-03" @default.
- W2788922182 modified "2023-10-11" @default.
- W2788922182 title "Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm" @default.
- W2788922182 cites W1493764732 @default.
- W2788922182 cites W1597037182 @default.
- W2788922182 cites W1781899199 @default.
- W2788922182 cites W1966188599 @default.
- W2788922182 cites W1968687038 @default.
- W2788922182 cites W1984230568 @default.
- W2788922182 cites W1985467574 @default.
- W2788922182 cites W1989278126 @default.
- W2788922182 cites W1991740310 @default.
- W2788922182 cites W1992012098 @default.
- W2788922182 cites W1998044687 @default.
- W2788922182 cites W2002666445 @default.
- W2788922182 cites W2005824971 @default.
- W2788922182 cites W2009447804 @default.
- W2788922182 cites W2014672328 @default.
- W2788922182 cites W2031523249 @default.
- W2788922182 cites W2033058745 @default.
- W2788922182 cites W2034938249 @default.
- W2788922182 cites W2058016497 @default.
- W2788922182 cites W2059973431 @default.
- W2788922182 cites W2070333432 @default.
- W2788922182 cites W2070454382 @default.
- W2788922182 cites W2071773958 @default.
- W2788922182 cites W2077095261 @default.
- W2788922182 cites W2085536780 @default.
- W2788922182 cites W2092661786 @default.
- W2788922182 cites W2114137384 @default.
- W2788922182 cites W2162375617 @default.
- W2788922182 cites W2192767319 @default.
- W2788922182 cites W2199368408 @default.
- W2788922182 cites W2218043766 @default.
- W2788922182 cites W2288542145 @default.
- W2788922182 cites W2295646973 @default.
- W2788922182 cites W2377941220 @default.
- W2788922182 cites W2414160073 @default.
- W2788922182 cites W2461102131 @default.
- W2788922182 cites W2469420418 @default.
- W2788922182 cites W2475415083 @default.
- W2788922182 cites W2509431182 @default.
- W2788922182 cites W2567477586 @default.
- W2788922182 cites W414300589 @default.
- W2788922182 cites W427224453 @default.
- W2788922182 cites W45047736 @default.
- W2788922182 cites W2465558594 @default.
- W2788922182 doi "https://doi.org/10.1108/hff-07-2016-0278" @default.
- W2788922182 hasPublicationYear "2018" @default.
- W2788922182 type Work @default.
- W2788922182 sameAs 2788922182 @default.
- W2788922182 citedByCount "135" @default.
- W2788922182 countsByYear W27889221822017 @default.
- W2788922182 countsByYear W27889221822018 @default.
- W2788922182 countsByYear W27889221822019 @default.
- W2788922182 countsByYear W27889221822020 @default.
- W2788922182 countsByYear W27889221822021 @default.
- W2788922182 countsByYear W27889221822022 @default.
- W2788922182 countsByYear W27889221822023 @default.
- W2788922182 crossrefType "journal-article" @default.
- W2788922182 hasAuthorship W2788922182A5081806740 @default.
- W2788922182 hasConcept C11413529 @default.
- W2788922182 hasConcept C114614502 @default.
- W2788922182 hasConcept C121332964 @default.
- W2788922182 hasConcept C126255220 @default.
- W2788922182 hasConcept C134306372 @default.
- W2788922182 hasConcept C158622935 @default.
- W2788922182 hasConcept C162324750 @default.
- W2788922182 hasConcept C2777303404 @default.
- W2788922182 hasConcept C28826006 @default.
- W2788922182 hasConcept C33923547 @default.
- W2788922182 hasConcept C50522688 @default.
- W2788922182 hasConcept C62520636 @default.
- W2788922182 hasConcept C74193536 @default.
- W2788922182 hasConcept C93779851 @default.
- W2788922182 hasConceptScore W2788922182C11413529 @default.
- W2788922182 hasConceptScore W2788922182C114614502 @default.
- W2788922182 hasConceptScore W2788922182C121332964 @default.
- W2788922182 hasConceptScore W2788922182C126255220 @default.
- W2788922182 hasConceptScore W2788922182C134306372 @default.
- W2788922182 hasConceptScore W2788922182C158622935 @default.
- W2788922182 hasConceptScore W2788922182C162324750 @default.
- W2788922182 hasConceptScore W2788922182C2777303404 @default.
- W2788922182 hasConceptScore W2788922182C28826006 @default.
- W2788922182 hasConceptScore W2788922182C33923547 @default.
- W2788922182 hasConceptScore W2788922182C50522688 @default.
- W2788922182 hasConceptScore W2788922182C62520636 @default.
- W2788922182 hasConceptScore W2788922182C74193536 @default.
- W2788922182 hasConceptScore W2788922182C93779851 @default.
- W2788922182 hasIssue "4" @default.
- W2788922182 hasLocation W27889221821 @default.
- W2788922182 hasOpenAccess W2788922182 @default.
- W2788922182 hasPrimaryLocation W27889221821 @default.
- W2788922182 hasRelatedWork W2000539368 @default.
- W2788922182 hasRelatedWork W2009793451 @default.