Matches in SemOpenAlex for { <https://semopenalex.org/work/W2788978872> ?p ?o ?g. }
- W2788978872 abstract "Chronic recording of neural signals is indispensable in designing efficient brain machine interfaces and to elucidate human neurophysiology. The advent of multi-channel micro-electrode arrays has driven the need for electronic store cord neural signals from many neurons. The continuous increase in demand of data from more number of neurons is challenging for the design of an efficient neural recording frontend(NRFE). Power consumption per channel and data rate minimization are two key problems which need to be addressed by next generation of neural recording systems. Area consumption per channel must be low for small implant size. Dynamic range in NRFE can vary with time due to change in electrode-neuron distance or background noise which demands adaptability. In this thesis, techniques to reduce power-per-channel and area-per-channel in a NRFE, via new circuits and architectures, are proposed. An area efficient low power neural LNA is presented in UMC 0.13 μm 1P8M CMOS technology. The amplifier can be biased adaptively from 200 nA to 2 μA , modulating input referred noise from 9.92 μV to 3.9μV . We also describe a low noise design technique which minimizes the noise contribution of the load circuitry. Optimum sizing of the input transistors minimizes the accentuation of the input referred noise of the amplifier. It obviates the need of large input coupling capacitance in the amplifier which saves considerable amount of chip area. In vitro experiments were performed to validate the applicability of the neural LNA in neural recording systems. ADC is another important block in a NRFE. An 8-bit SAR ADC along with the input and reference buffer is implemented in 0.13 μm CMOS technology. The use of ping-pong input sampling is emphasized for multichannel input to alleviate the bandwidth requirement of the input buffer. To reduce the output data rate, the A/D process is only enabled through a proposed activity dependent A/D scheme which ensures that the background noise is not processed. Based on the dynamic range requirement, the ADC resolution is adjusted from 8 to 1 bit at 1 bit step to reduce power consumption linearly. The ADC consumes 8.8 μW from1Vsupply at1MS/s and achieves ENOB of 7.7 bit. The ADC achieves FoM of 42.3 fJ/conversion in 0.13 μm CMOS technology. Power consumption in SARADCs is greatly benefited by CMOS scaling due to its highly digital nature. However the power consumption in the capacitive DAC does not scale as well as the digital logic. In this thesis, two energy-efficient DAC switching techniques, Flip DAC and Quaternary capacitor switching, are proposed to reduce their energy consumption. Using these techniques, the energy consumption in the DAC can be reduced by 37 % and 42.5 % compared to the present state-of-the-art. A novel concept of code-independent energy consumption is introduced and emphasized. It mitigates energy consumption degradation with small input signal dynamic range." @default.
- W2788978872 created "2018-03-06" @default.
- W2788978872 creator A5073769814 @default.
- W2788978872 date "2012-01-01" @default.
- W2788978872 modified "2023-09-24" @default.
- W2788978872 title "Low Power and Low Area Techniques for Neural Recording Application" @default.
- W2788978872 cites W1484704128 @default.
- W2788978872 cites W1566916904 @default.
- W2788978872 cites W1594101521 @default.
- W2788978872 cites W1672697766 @default.
- W2788978872 cites W1703323992 @default.
- W2788978872 cites W1949922239 @default.
- W2788978872 cites W1989295665 @default.
- W2788978872 cites W1997159023 @default.
- W2788978872 cites W2008266343 @default.
- W2788978872 cites W2053643972 @default.
- W2788978872 cites W2053779241 @default.
- W2788978872 cites W2060655139 @default.
- W2788978872 cites W2061752509 @default.
- W2788978872 cites W2063037331 @default.
- W2788978872 cites W2065682167 @default.
- W2788978872 cites W2070653196 @default.
- W2788978872 cites W2092064447 @default.
- W2788978872 cites W2098692728 @default.
- W2788978872 cites W2111186324 @default.
- W2788978872 cites W2112611349 @default.
- W2788978872 cites W2113333016 @default.
- W2788978872 cites W2118814875 @default.
- W2788978872 cites W2122965295 @default.
- W2788978872 cites W2124877677 @default.
- W2788978872 cites W2126203685 @default.
- W2788978872 cites W2128157854 @default.
- W2788978872 cites W2132406028 @default.
- W2788978872 cites W2136213861 @default.
- W2788978872 cites W2136248087 @default.
- W2788978872 cites W2140281076 @default.
- W2788978872 cites W2144310300 @default.
- W2788978872 cites W2146770873 @default.
- W2788978872 cites W2146978303 @default.
- W2788978872 cites W2147887812 @default.
- W2788978872 cites W2148841250 @default.
- W2788978872 cites W2152474909 @default.
- W2788978872 cites W2152963787 @default.
- W2788978872 cites W2153636199 @default.
- W2788978872 cites W2154979280 @default.
- W2788978872 cites W2159219108 @default.
- W2788978872 cites W2159318368 @default.
- W2788978872 cites W2160414975 @default.
- W2788978872 cites W2160509435 @default.
- W2788978872 cites W2160997918 @default.
- W2788978872 cites W2164251692 @default.
- W2788978872 cites W2168452204 @default.
- W2788978872 cites W2169256268 @default.
- W2788978872 cites W2188838890 @default.
- W2788978872 cites W2436587685 @default.
- W2788978872 cites W2534409337 @default.
- W2788978872 cites W2541421006 @default.
- W2788978872 cites W2542290903 @default.
- W2788978872 cites W2152567151 @default.
- W2788978872 cites W2177464813 @default.
- W2788978872 cites W3021812775 @default.
- W2788978872 hasPublicationYear "2012" @default.
- W2788978872 type Work @default.
- W2788978872 sameAs 2788978872 @default.
- W2788978872 citedByCount "1" @default.
- W2788978872 countsByYear W27889788722018 @default.
- W2788978872 crossrefType "dissertation" @default.
- W2788978872 hasAuthorship W2788978872A5073769814 @default.
- W2788978872 hasConcept C115961682 @default.
- W2788978872 hasConcept C119599485 @default.
- W2788978872 hasConcept C127162648 @default.
- W2788978872 hasConcept C127413603 @default.
- W2788978872 hasConcept C154945302 @default.
- W2788978872 hasConcept C155332784 @default.
- W2788978872 hasConcept C166345560 @default.
- W2788978872 hasConcept C194257627 @default.
- W2788978872 hasConcept C24326235 @default.
- W2788978872 hasConcept C41008148 @default.
- W2788978872 hasConcept C46362747 @default.
- W2788978872 hasConcept C99498987 @default.
- W2788978872 hasConceptScore W2788978872C115961682 @default.
- W2788978872 hasConceptScore W2788978872C119599485 @default.
- W2788978872 hasConceptScore W2788978872C127162648 @default.
- W2788978872 hasConceptScore W2788978872C127413603 @default.
- W2788978872 hasConceptScore W2788978872C154945302 @default.
- W2788978872 hasConceptScore W2788978872C155332784 @default.
- W2788978872 hasConceptScore W2788978872C166345560 @default.
- W2788978872 hasConceptScore W2788978872C194257627 @default.
- W2788978872 hasConceptScore W2788978872C24326235 @default.
- W2788978872 hasConceptScore W2788978872C41008148 @default.
- W2788978872 hasConceptScore W2788978872C46362747 @default.
- W2788978872 hasConceptScore W2788978872C99498987 @default.
- W2788978872 hasLocation W27889788721 @default.
- W2788978872 hasOpenAccess W2788978872 @default.
- W2788978872 hasPrimaryLocation W27889788721 @default.
- W2788978872 hasRelatedWork W2003444784 @default.
- W2788978872 hasRelatedWork W2042530237 @default.
- W2788978872 hasRelatedWork W2084386665 @default.
- W2788978872 hasRelatedWork W2134869876 @default.
- W2788978872 hasRelatedWork W2134931659 @default.