Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789122432> ?p ?o ?g. }
- W2789122432 abstract "This paper introduces a novel measure-theoretic theory for machine learning that does not require statistical assumptions. Based on this theory, a new regularization method in deep learning is derived and shown to outperform previous methods in CIFAR-10, CIFAR-100, and SVHN. Moreover, the proposed theory provides a theoretical basis for a family of practically successful regularization methods in deep learning. We discuss several consequences of our results on one-shot learning, representation learning, deep learning, and curriculum learning. Unlike statistical learning theory, the proposed learning theory analyzes each problem instance individually via measure theory, rather than a set of problem instances via statistics. As a result, it provides different types of results and insights when compared to statistical learning theory." @default.
- W2789122432 created "2018-03-06" @default.
- W2789122432 creator A5003184366 @default.
- W2789122432 creator A5012862284 @default.
- W2789122432 creator A5083701330 @default.
- W2789122432 creator A5086198262 @default.
- W2789122432 date "2018-02-21" @default.
- W2789122432 modified "2023-09-26" @default.
- W2789122432 title "Generalization in Machine Learning via Analytical Learning Theory" @default.
- W2789122432 cites W1496559305 @default.
- W2789122432 cites W1614597761 @default.
- W2789122432 cites W1848067327 @default.
- W2789122432 cites W1892947258 @default.
- W2789122432 cites W1899249567 @default.
- W2789122432 cites W1944672 @default.
- W2789122432 cites W2022681869 @default.
- W2789122432 cites W2036753824 @default.
- W2789122432 cites W2072128103 @default.
- W2789122432 cites W2076091729 @default.
- W2789122432 cites W2106491486 @default.
- W2789122432 cites W2139338362 @default.
- W2789122432 cites W2140262981 @default.
- W2789122432 cites W2162341153 @default.
- W2789122432 cites W2187386544 @default.
- W2789122432 cites W2296073425 @default.
- W2789122432 cites W2401231614 @default.
- W2789122432 cites W2605372163 @default.
- W2789122432 cites W2617242334 @default.
- W2789122432 cites W2618003483 @default.
- W2789122432 cites W2622255292 @default.
- W2789122432 cites W2731468224 @default.
- W2789122432 cites W2746314669 @default.
- W2789122432 cites W2766196653 @default.
- W2789122432 cites W2768015416 @default.
- W2789122432 cites W2775461895 @default.
- W2789122432 cites W2782476368 @default.
- W2789122432 cites W2809994596 @default.
- W2789122432 cites W2900457592 @default.
- W2789122432 cites W2914007848 @default.
- W2789122432 cites W2962911888 @default.
- W2789122432 cites W2963096987 @default.
- W2789122432 cites W2963100491 @default.
- W2789122432 cites W2963308814 @default.
- W2789122432 cites W2963435192 @default.
- W2789122432 cites W2963509076 @default.
- W2789122432 cites W2963586744 @default.
- W2789122432 cites W2963664410 @default.
- W2789122432 cites W2963975770 @default.
- W2789122432 cites W2964040467 @default.
- W2789122432 cites W2964085736 @default.
- W2789122432 cites W3022552533 @default.
- W2789122432 cites W3103357424 @default.
- W2789122432 cites W3137695714 @default.
- W2789122432 cites W601863383 @default.
- W2789122432 doi "https://doi.org/10.48550/arxiv.1802.07426" @default.
- W2789122432 hasPublicationYear "2018" @default.
- W2789122432 type Work @default.
- W2789122432 sameAs 2789122432 @default.
- W2789122432 citedByCount "8" @default.
- W2789122432 countsByYear W27891224322018 @default.
- W2789122432 countsByYear W27891224322019 @default.
- W2789122432 countsByYear W27891224322020 @default.
- W2789122432 countsByYear W27891224322021 @default.
- W2789122432 crossrefType "posted-content" @default.
- W2789122432 hasAuthorship W2789122432A5003184366 @default.
- W2789122432 hasAuthorship W2789122432A5012862284 @default.
- W2789122432 hasAuthorship W2789122432A5083701330 @default.
- W2789122432 hasAuthorship W2789122432A5086198262 @default.
- W2789122432 hasBestOaLocation W27891224321 @default.
- W2789122432 hasConcept C108583219 @default.
- W2789122432 hasConcept C115903097 @default.
- W2789122432 hasConcept C119857082 @default.
- W2789122432 hasConcept C12267149 @default.
- W2789122432 hasConcept C145420912 @default.
- W2789122432 hasConcept C154945302 @default.
- W2789122432 hasConcept C24138899 @default.
- W2789122432 hasConcept C2776135515 @default.
- W2789122432 hasConcept C2779915298 @default.
- W2789122432 hasConcept C32254414 @default.
- W2789122432 hasConcept C33923547 @default.
- W2789122432 hasConcept C41008148 @default.
- W2789122432 hasConcept C50292564 @default.
- W2789122432 hasConcept C77967617 @default.
- W2789122432 hasConcept C92393732 @default.
- W2789122432 hasConceptScore W2789122432C108583219 @default.
- W2789122432 hasConceptScore W2789122432C115903097 @default.
- W2789122432 hasConceptScore W2789122432C119857082 @default.
- W2789122432 hasConceptScore W2789122432C12267149 @default.
- W2789122432 hasConceptScore W2789122432C145420912 @default.
- W2789122432 hasConceptScore W2789122432C154945302 @default.
- W2789122432 hasConceptScore W2789122432C24138899 @default.
- W2789122432 hasConceptScore W2789122432C2776135515 @default.
- W2789122432 hasConceptScore W2789122432C2779915298 @default.
- W2789122432 hasConceptScore W2789122432C32254414 @default.
- W2789122432 hasConceptScore W2789122432C33923547 @default.
- W2789122432 hasConceptScore W2789122432C41008148 @default.
- W2789122432 hasConceptScore W2789122432C50292564 @default.
- W2789122432 hasConceptScore W2789122432C77967617 @default.
- W2789122432 hasConceptScore W2789122432C92393732 @default.
- W2789122432 hasLocation W27891224321 @default.