Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789160147> ?p ?o ?g. }
- W2789160147 endingPage "306" @default.
- W2789160147 startingPage "306" @default.
- W2789160147 abstract "The decision tree is one of the most effective tools for deriving meaningful outcomes from image data acquired from the visual sensors. Owing to its reliability, superior generalization abilities, and easy implementation, the tree model has been widely used in various applications. However, in image classification problems, conventional tree methods use only a few sparse attributes as the splitting criterion. Consequently, they suffer from several drawbacks in terms of performance and environmental sensitivity. To overcome these limitations, this paper introduces a new tree induction algorithm that classifies images on the basis of local area learning. To train our predictive model, we extract a random local area within the image and use it as a feature for classification. In addition, the self-organizing map, which is a clustering technique, is used for node learning. We also adopt a random sampled optimization technique to search for the optimal node. Finally, each trained node stores the weights that represent the training data and class probabilities. Thus, a recursively trained tree classifies the data hierarchically based on the local similarity at each node. The proposed tree is a type of predictive model that offers benefits in terms of image’s semantic energy conservation compared with conventional tree methods. Consequently, it exhibits improved performance under various conditions, such as noise and illumination changes. Moreover, the proposed algorithm can improve the generalization ability owing to its randomness. In addition, it can be easily applied to ensemble techniques. To evaluate the performance of the proposed algorithm, we perform quantitative and qualitative comparisons with various tree-based methods using four image datasets. The results show that our algorithm not only involves a lower classification error than the conventional methods but also exhibits stable performance even under unfavorable conditions such as noise and illumination changes." @default.
- W2789160147 created "2018-03-06" @default.
- W2789160147 creator A5015739530 @default.
- W2789160147 creator A5049425887 @default.
- W2789160147 creator A5078594610 @default.
- W2789160147 date "2018-01-20" @default.
- W2789160147 modified "2023-09-27" @default.
- W2789160147 title "L-Tree: A Local-Area-Learning-Based Tree Induction Algorithm for Image Classification" @default.
- W2789160147 cites W1580783955 @default.
- W2789160147 cites W1678356000 @default.
- W2789160147 cites W1839932345 @default.
- W2789160147 cites W1976047850 @default.
- W2789160147 cites W1992016704 @default.
- W2789160147 cites W2013139595 @default.
- W2789160147 cites W2014418634 @default.
- W2789160147 cites W2032477387 @default.
- W2789160147 cites W2046079134 @default.
- W2789160147 cites W2056132907 @default.
- W2789160147 cites W2060280062 @default.
- W2789160147 cites W2070299648 @default.
- W2789160147 cites W2070493638 @default.
- W2789160147 cites W2073182108 @default.
- W2789160147 cites W2112796928 @default.
- W2789160147 cites W2122473047 @default.
- W2789160147 cites W2139479830 @default.
- W2789160147 cites W2150757437 @default.
- W2789160147 cites W2160978182 @default.
- W2789160147 cites W2166049352 @default.
- W2789160147 cites W2208340121 @default.
- W2789160147 cites W2237379963 @default.
- W2789160147 cites W2255840091 @default.
- W2789160147 cites W2419742225 @default.
- W2789160147 cites W2469548515 @default.
- W2789160147 cites W2726204845 @default.
- W2789160147 cites W2911964244 @default.
- W2789160147 cites W3104887532 @default.
- W2789160147 cites W4212883601 @default.
- W2789160147 cites W4236137412 @default.
- W2789160147 cites W4248455063 @default.
- W2789160147 cites W873782400 @default.
- W2789160147 doi "https://doi.org/10.3390/s18010306" @default.
- W2789160147 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5795769" @default.
- W2789160147 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29361699" @default.
- W2789160147 hasPublicationYear "2018" @default.
- W2789160147 type Work @default.
- W2789160147 sameAs 2789160147 @default.
- W2789160147 citedByCount "6" @default.
- W2789160147 countsByYear W27891601472020 @default.
- W2789160147 countsByYear W27891601472021 @default.
- W2789160147 countsByYear W27891601472023 @default.
- W2789160147 crossrefType "journal-article" @default.
- W2789160147 hasAuthorship W2789160147A5015739530 @default.
- W2789160147 hasAuthorship W2789160147A5049425887 @default.
- W2789160147 hasAuthorship W2789160147A5078594610 @default.
- W2789160147 hasBestOaLocation W27891601471 @default.
- W2789160147 hasConcept C10229987 @default.
- W2789160147 hasConcept C113174947 @default.
- W2789160147 hasConcept C11413529 @default.
- W2789160147 hasConcept C119857082 @default.
- W2789160147 hasConcept C124101348 @default.
- W2789160147 hasConcept C127413603 @default.
- W2789160147 hasConcept C134306372 @default.
- W2789160147 hasConcept C153180895 @default.
- W2789160147 hasConcept C154945302 @default.
- W2789160147 hasConcept C177148314 @default.
- W2789160147 hasConcept C33923547 @default.
- W2789160147 hasConcept C41008148 @default.
- W2789160147 hasConcept C5481197 @default.
- W2789160147 hasConcept C62611344 @default.
- W2789160147 hasConcept C66938386 @default.
- W2789160147 hasConcept C73555534 @default.
- W2789160147 hasConcept C84525736 @default.
- W2789160147 hasConceptScore W2789160147C10229987 @default.
- W2789160147 hasConceptScore W2789160147C113174947 @default.
- W2789160147 hasConceptScore W2789160147C11413529 @default.
- W2789160147 hasConceptScore W2789160147C119857082 @default.
- W2789160147 hasConceptScore W2789160147C124101348 @default.
- W2789160147 hasConceptScore W2789160147C127413603 @default.
- W2789160147 hasConceptScore W2789160147C134306372 @default.
- W2789160147 hasConceptScore W2789160147C153180895 @default.
- W2789160147 hasConceptScore W2789160147C154945302 @default.
- W2789160147 hasConceptScore W2789160147C177148314 @default.
- W2789160147 hasConceptScore W2789160147C33923547 @default.
- W2789160147 hasConceptScore W2789160147C41008148 @default.
- W2789160147 hasConceptScore W2789160147C5481197 @default.
- W2789160147 hasConceptScore W2789160147C62611344 @default.
- W2789160147 hasConceptScore W2789160147C66938386 @default.
- W2789160147 hasConceptScore W2789160147C73555534 @default.
- W2789160147 hasConceptScore W2789160147C84525736 @default.
- W2789160147 hasIssue "1" @default.
- W2789160147 hasLocation W27891601471 @default.
- W2789160147 hasLocation W27891601472 @default.
- W2789160147 hasLocation W27891601473 @default.
- W2789160147 hasLocation W27891601474 @default.
- W2789160147 hasLocation W27891601475 @default.
- W2789160147 hasOpenAccess W2789160147 @default.
- W2789160147 hasPrimaryLocation W27891601471 @default.
- W2789160147 hasRelatedWork W1506077561 @default.