Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789199278> ?p ?o ?g. }
- W2789199278 endingPage "20170056" @default.
- W2789199278 startingPage "20170056" @default.
- W2789199278 abstract "One of the major challenges in cultural evolution is to understand why and how various forms of social learning are used in human populations, both now and in the past. To date, much of the theoretical work on social learning has been done in isolation of data, and consequently many insights focus on revealing the learning processes or the distributions of cultural variants that are expected to have evolved in human populations. In population genetics, recent methodological advances have allowed a greater understanding of the explicit demographic and/or selection mechanisms that underlie observed allele frequency distributions across the globe, and their change through time. In particular, generative frameworks—often using coalescent-based simulation coupled with approximate Bayesian computation (ABC)—have provided robust inferences on the human past, with no reliance on a priori assumptions of equilibrium. Here, we demonstrate the applicability and utility of generative inference approaches to the field of cultural evolution. The framework advocated here uses observed population-level frequency data directly to establish the likely presence or absence of particular hypothesized learning strategies. In this context, we discuss the problem of equifinality and argue that, in the light of sparse cultural data and the multiplicity of possible social learning processes, the exclusion of those processes inconsistent with the observed data might be the most instructive outcome. Finally, we summarize the findings of generative inference approaches applied to a number of case studies. This article is part of the theme issue ‘Bridging cultural gaps: interdisciplinary studies in human cultural evolution’." @default.
- W2789199278 created "2018-03-06" @default.
- W2789199278 creator A5015642711 @default.
- W2789199278 creator A5073386780 @default.
- W2789199278 date "2018-02-12" @default.
- W2789199278 modified "2023-10-13" @default.
- W2789199278 title "Generative inference for cultural evolution" @default.
- W2789199278 cites W1528823637 @default.
- W2789199278 cites W1740065471 @default.
- W2789199278 cites W1928220195 @default.
- W2789199278 cites W1946356339 @default.
- W2789199278 cites W1964224776 @default.
- W2789199278 cites W1965175390 @default.
- W2789199278 cites W1977578104 @default.
- W2789199278 cites W1977942338 @default.
- W2789199278 cites W1979677919 @default.
- W2789199278 cites W1982317895 @default.
- W2789199278 cites W1983130208 @default.
- W2789199278 cites W1986837475 @default.
- W2789199278 cites W1991069939 @default.
- W2789199278 cites W1996648136 @default.
- W2789199278 cites W2003902966 @default.
- W2789199278 cites W2004778468 @default.
- W2789199278 cites W2007802209 @default.
- W2789199278 cites W2008003407 @default.
- W2789199278 cites W2008064453 @default.
- W2789199278 cites W2011305730 @default.
- W2789199278 cites W2012519308 @default.
- W2789199278 cites W2019956985 @default.
- W2789199278 cites W2021540124 @default.
- W2789199278 cites W2021941448 @default.
- W2789199278 cites W2031134376 @default.
- W2789199278 cites W2033850030 @default.
- W2789199278 cites W2034795216 @default.
- W2789199278 cites W2038900621 @default.
- W2789199278 cites W2045973738 @default.
- W2789199278 cites W2065689233 @default.
- W2789199278 cites W2066201496 @default.
- W2789199278 cites W2075777733 @default.
- W2789199278 cites W2075825402 @default.
- W2789199278 cites W2089682881 @default.
- W2789199278 cites W2091705028 @default.
- W2789199278 cites W2093044565 @default.
- W2789199278 cites W2096019312 @default.
- W2789199278 cites W2100426387 @default.
- W2789199278 cites W2103702476 @default.
- W2789199278 cites W2104563567 @default.
- W2789199278 cites W2111968380 @default.
- W2789199278 cites W2116416291 @default.
- W2789199278 cites W2117683347 @default.
- W2789199278 cites W2125241594 @default.
- W2789199278 cites W2128505999 @default.
- W2789199278 cites W2132698914 @default.
- W2789199278 cites W2146620998 @default.
- W2789199278 cites W2146803704 @default.
- W2789199278 cites W2148347530 @default.
- W2789199278 cites W2149763082 @default.
- W2789199278 cites W2152246075 @default.
- W2789199278 cites W2153587490 @default.
- W2789199278 cites W2154531686 @default.
- W2789199278 cites W2156400177 @default.
- W2789199278 cites W2156984627 @default.
- W2789199278 cites W2161692256 @default.
- W2789199278 cites W2165657585 @default.
- W2789199278 cites W2165974744 @default.
- W2789199278 cites W2166214412 @default.
- W2789199278 cites W2167287869 @default.
- W2789199278 cites W2167452694 @default.
- W2789199278 cites W2170855736 @default.
- W2789199278 cites W2171350947 @default.
- W2789199278 cites W2171463101 @default.
- W2789199278 cites W2173885266 @default.
- W2789199278 cites W2206328021 @default.
- W2789199278 cites W2225925591 @default.
- W2789199278 cites W2260837649 @default.
- W2789199278 cites W2301633793 @default.
- W2789199278 cites W2316012851 @default.
- W2789199278 cites W2563841787 @default.
- W2789199278 cites W2581071829 @default.
- W2789199278 cites W2594309842 @default.
- W2789199278 cites W2607887792 @default.
- W2789199278 cites W2745369398 @default.
- W2789199278 cites W2889011686 @default.
- W2789199278 cites W2951466328 @default.
- W2789199278 cites W4210633230 @default.
- W2789199278 cites W4245246126 @default.
- W2789199278 cites W4248681815 @default.
- W2789199278 cites W4931210 @default.
- W2789199278 cites W596688237 @default.
- W2789199278 doi "https://doi.org/10.1098/rstb.2017.0056" @default.
- W2789199278 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5812969" @default.
- W2789199278 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29440522" @default.
- W2789199278 hasPublicationYear "2018" @default.
- W2789199278 type Work @default.
- W2789199278 sameAs 2789199278 @default.
- W2789199278 citedByCount "37" @default.
- W2789199278 countsByYear W27891992782018 @default.
- W2789199278 countsByYear W27891992782019 @default.