Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789243003> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2789243003 abstract "The task of three-dimensional (3D) human pose estimation from a single image can be divided into two parts: (1) Two-dimensional (2D) human joint detection from the image and (2) estimating a 3D pose from the 2D joints. Herein, we focus on the second part, i.e., a 3D pose estimation from 2D joint locations. The problem with existing methods is that they require either (1) a 3D pose dataset or (2) 2D joint locations in consecutive frames taken from a video sequence. We aim to solve these problems. For the first time, we propose a method that learns a 3D human pose without any 3D datasets. Our method can predict a 3D pose from 2D joint locations in a single image. Our system is based on the generative adversarial networks, and the networks are trained in an unsupervised manner. Our primary idea is that, if the network can predict a 3D human pose correctly, the 3D pose that is projected onto a 2D plane should not collapse even if it is rotated perpendicularly. We evaluated the performance of our method using Human3.6M and the MPII dataset and showed that our network can predict a 3D pose well even if the 3D dataset is not available during training." @default.
- W2789243003 created "2018-03-29" @default.
- W2789243003 creator A5023905620 @default.
- W2789243003 creator A5051593122 @default.
- W2789243003 creator A5070112807 @default.
- W2789243003 creator A5074423925 @default.
- W2789243003 date "2018-03-22" @default.
- W2789243003 modified "2023-09-26" @default.
- W2789243003 title "Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations" @default.
- W2789243003 cites W2080873731 @default.
- W2789243003 cites W2101032778 @default.
- W2789243003 cites W2797184202 @default.
- W2789243003 cites W2950762923 @default.
- W2789243003 doi "https://doi.org/10.48550/arxiv.1803.08244" @default.
- W2789243003 hasPublicationYear "2018" @default.
- W2789243003 type Work @default.
- W2789243003 sameAs 2789243003 @default.
- W2789243003 citedByCount "16" @default.
- W2789243003 countsByYear W27892430032019 @default.
- W2789243003 countsByYear W27892430032020 @default.
- W2789243003 countsByYear W27892430032021 @default.
- W2789243003 crossrefType "posted-content" @default.
- W2789243003 hasAuthorship W2789243003A5023905620 @default.
- W2789243003 hasAuthorship W2789243003A5051593122 @default.
- W2789243003 hasAuthorship W2789243003A5070112807 @default.
- W2789243003 hasAuthorship W2789243003A5074423925 @default.
- W2789243003 hasBestOaLocation W27892430031 @default.
- W2789243003 hasConcept C115961682 @default.
- W2789243003 hasConcept C120665830 @default.
- W2789243003 hasConcept C121332964 @default.
- W2789243003 hasConcept C127413603 @default.
- W2789243003 hasConcept C153180895 @default.
- W2789243003 hasConcept C154945302 @default.
- W2789243003 hasConcept C170154142 @default.
- W2789243003 hasConcept C18555067 @default.
- W2789243003 hasConcept C192209626 @default.
- W2789243003 hasConcept C201995342 @default.
- W2789243003 hasConcept C2780451532 @default.
- W2789243003 hasConcept C31972630 @default.
- W2789243003 hasConcept C36613465 @default.
- W2789243003 hasConcept C41008148 @default.
- W2789243003 hasConcept C52102323 @default.
- W2789243003 hasConceptScore W2789243003C115961682 @default.
- W2789243003 hasConceptScore W2789243003C120665830 @default.
- W2789243003 hasConceptScore W2789243003C121332964 @default.
- W2789243003 hasConceptScore W2789243003C127413603 @default.
- W2789243003 hasConceptScore W2789243003C153180895 @default.
- W2789243003 hasConceptScore W2789243003C154945302 @default.
- W2789243003 hasConceptScore W2789243003C170154142 @default.
- W2789243003 hasConceptScore W2789243003C18555067 @default.
- W2789243003 hasConceptScore W2789243003C192209626 @default.
- W2789243003 hasConceptScore W2789243003C201995342 @default.
- W2789243003 hasConceptScore W2789243003C2780451532 @default.
- W2789243003 hasConceptScore W2789243003C31972630 @default.
- W2789243003 hasConceptScore W2789243003C36613465 @default.
- W2789243003 hasConceptScore W2789243003C41008148 @default.
- W2789243003 hasConceptScore W2789243003C52102323 @default.
- W2789243003 hasLocation W27892430031 @default.
- W2789243003 hasOpenAccess W2789243003 @default.
- W2789243003 hasPrimaryLocation W27892430031 @default.
- W2789243003 hasRelatedWork W2004095265 @default.
- W2789243003 hasRelatedWork W2025164974 @default.
- W2789243003 hasRelatedWork W2039156953 @default.
- W2789243003 hasRelatedWork W2064877078 @default.
- W2789243003 hasRelatedWork W2128635338 @default.
- W2789243003 hasRelatedWork W2154613448 @default.
- W2789243003 hasRelatedWork W2567319754 @default.
- W2789243003 hasRelatedWork W2952510816 @default.
- W2789243003 hasRelatedWork W2963043350 @default.
- W2789243003 hasRelatedWork W2086011200 @default.
- W2789243003 isParatext "false" @default.
- W2789243003 isRetracted "false" @default.
- W2789243003 magId "2789243003" @default.
- W2789243003 workType "article" @default.