Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789266805> ?p ?o ?g. }
- W2789266805 endingPage "944" @default.
- W2789266805 startingPage "944" @default.
- W2789266805 abstract "The environmental and economic impacts of exotic fungal species on natural and plantation forests have been historically catastrophic. Recorded surveillance and control actions are challenging because they are costly, time-consuming, and hazardous in remote areas. Prolonged periods of testing and observation of site-based tests have limitations in verifying the rapid proliferation of exotic pathogens and deterioration rates in hosts. Recent remote sensing approaches have offered fast, broad-scale, and affordable surveys as well as additional indicators that can complement on-ground tests. This paper proposes a framework that consolidates site-based insights and remote sensing capabilities to detect and segment deteriorations by fungal pathogens in natural and plantation forests. This approach is illustrated with an experimentation case of myrtle rust (Austropuccinia psidii) on paperbark tea trees (Melaleuca quinquenervia) in New South Wales (NSW), Australia. The method integrates unmanned aerial vehicles (UAVs), hyperspectral image sensors, and data processing algorithms using machine learning. Imagery is acquired using a Headwall Nano-Hyperspec ® camera, orthorectified in Headwall SpectralView ® , and processed in Python programming language using eXtreme Gradient Boosting (XGBoost), Geospatial Data Abstraction Library (GDAL), and Scikit-learn third-party libraries. In total, 11,385 samples were extracted and labelled into five classes: two classes for deterioration status and three classes for background objects. Insights reveal individual detection rates of 95% for healthy trees, 97% for deteriorated trees, and a global multiclass detection rate of 97%. The methodology is versatile to be applied to additional datasets taken with different image sensors, and the processing of large datasets with freeware tools." @default.
- W2789266805 created "2018-03-29" @default.
- W2789266805 creator A5064735984 @default.
- W2789266805 creator A5071075714 @default.
- W2789266805 creator A5083244259 @default.
- W2789266805 creator A5083431819 @default.
- W2789266805 date "2018-03-22" @default.
- W2789266805 modified "2023-10-07" @default.
- W2789266805 title "Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence" @default.
- W2789266805 cites W1442930683 @default.
- W2789266805 cites W1580620138 @default.
- W2789266805 cites W1898091954 @default.
- W2789266805 cites W1964217023 @default.
- W2789266805 cites W1971496828 @default.
- W2789266805 cites W1972964370 @default.
- W2789266805 cites W1973628069 @default.
- W2789266805 cites W1983320402 @default.
- W2789266805 cites W1987098787 @default.
- W2789266805 cites W1987758547 @default.
- W2789266805 cites W1998911869 @default.
- W2789266805 cites W2000613913 @default.
- W2789266805 cites W2000980675 @default.
- W2789266805 cites W2009948215 @default.
- W2789266805 cites W2011301426 @default.
- W2789266805 cites W2018205127 @default.
- W2789266805 cites W2033427500 @default.
- W2789266805 cites W2051995389 @default.
- W2789266805 cites W2059862423 @default.
- W2789266805 cites W2061589001 @default.
- W2789266805 cites W2061975343 @default.
- W2789266805 cites W2068778426 @default.
- W2789266805 cites W2068784360 @default.
- W2789266805 cites W2069209512 @default.
- W2789266805 cites W2087964940 @default.
- W2789266805 cites W2094847477 @default.
- W2789266805 cites W2111272682 @default.
- W2789266805 cites W2138078010 @default.
- W2789266805 cites W2166326933 @default.
- W2789266805 cites W2170340597 @default.
- W2789266805 cites W2174231454 @default.
- W2789266805 cites W2178471458 @default.
- W2789266805 cites W2219637805 @default.
- W2789266805 cites W2236370645 @default.
- W2789266805 cites W2317145231 @default.
- W2789266805 cites W2329243607 @default.
- W2789266805 cites W2359042397 @default.
- W2789266805 cites W2416708566 @default.
- W2789266805 cites W2433908152 @default.
- W2789266805 cites W2514385591 @default.
- W2789266805 cites W2560901046 @default.
- W2789266805 cites W2587019393 @default.
- W2789266805 cites W2597479177 @default.
- W2789266805 cites W2598591505 @default.
- W2789266805 cites W2615516218 @default.
- W2789266805 cites W2756496339 @default.
- W2789266805 cites W2760822277 @default.
- W2789266805 cites W2761176843 @default.
- W2789266805 cites W2769106699 @default.
- W2789266805 cites W2775950992 @default.
- W2789266805 cites W2788451552 @default.
- W2789266805 cites W2793166416 @default.
- W2789266805 cites W4229766473 @default.
- W2789266805 doi "https://doi.org/10.3390/s18040944" @default.
- W2789266805 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5948945" @default.
- W2789266805 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29565822" @default.
- W2789266805 hasPublicationYear "2018" @default.
- W2789266805 type Work @default.
- W2789266805 sameAs 2789266805 @default.
- W2789266805 citedByCount "84" @default.
- W2789266805 countsByYear W27892668052018 @default.
- W2789266805 countsByYear W27892668052019 @default.
- W2789266805 countsByYear W27892668052020 @default.
- W2789266805 countsByYear W27892668052021 @default.
- W2789266805 countsByYear W27892668052022 @default.
- W2789266805 countsByYear W27892668052023 @default.
- W2789266805 crossrefType "journal-article" @default.
- W2789266805 hasAuthorship W2789266805A5064735984 @default.
- W2789266805 hasAuthorship W2789266805A5071075714 @default.
- W2789266805 hasAuthorship W2789266805A5083244259 @default.
- W2789266805 hasAuthorship W2789266805A5083431819 @default.
- W2789266805 hasBestOaLocation W27892668051 @default.
- W2789266805 hasConcept C111919701 @default.
- W2789266805 hasConcept C115961682 @default.
- W2789266805 hasConcept C154945302 @default.
- W2789266805 hasConcept C159078339 @default.
- W2789266805 hasConcept C169258074 @default.
- W2789266805 hasConcept C205649164 @default.
- W2789266805 hasConcept C2776429412 @default.
- W2789266805 hasConcept C41008148 @default.
- W2789266805 hasConcept C46686674 @default.
- W2789266805 hasConcept C519991488 @default.
- W2789266805 hasConcept C58640448 @default.
- W2789266805 hasConcept C62649853 @default.
- W2789266805 hasConcept C82789328 @default.
- W2789266805 hasConcept C9770341 @default.
- W2789266805 hasConceptScore W2789266805C111919701 @default.
- W2789266805 hasConceptScore W2789266805C115961682 @default.
- W2789266805 hasConceptScore W2789266805C154945302 @default.