Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789329162> ?p ?o ?g. }
- W2789329162 endingPage "289" @default.
- W2789329162 startingPage "275" @default.
- W2789329162 abstract "Real-time precipitation data with high spatiotemporal resolutions are crucial for accurate hydrological forecasting. To improve the spatial resolution and quality of satellite precipitation, a three-step satellite and gauge precipitation merging method was formulated in this study: (1) bilinear interpolation is first applied to downscale coarser satellite precipitation to a finer resolution (PS); (2) the (mixed) geographically weighted regression methods coupled with a weighting function are then used to estimate biases of PS as functions of gauge observations (PO) and PS; and (3) biases of PS are finally corrected to produce a merged precipitation product. Based on the above framework, eight algorithms, a combination of two geographically weighted regression methods and four weighting functions, are developed to merge CMORPH (CPC MORPHing technique) precipitation with station observations on a daily scale in the Ziwuhe Basin of China. The geographical variables (elevation, slope, aspect, surface roughness, and distance to the coastline) and a meteorological variable (wind speed) were used for merging precipitation to avoid the artificial spatial autocorrelation resulting from traditional interpolation methods. The results show that the combination of the MGWR and BI-square function (MGWR-BI) has the best performance (R = 0.863 and RMSE = 7.273 mm/day) among the eight algorithms. The MGWR-BI algorithm was then applied to produce hourly merged precipitation product. Compared to the original CMORPH product (R = 0.208 and RMSE = 1.208 mm/hr), the quality of the merged data is significantly higher (R = 0.724 and RMSE = 0.706 mm/hr). The developed merging method not only improves the spatial resolution and quality of the satellite product but also is easy to implement, which is valuable for hydrological modeling and other applications." @default.
- W2789329162 created "2018-03-29" @default.
- W2789329162 creator A5002863452 @default.
- W2789329162 creator A5025781110 @default.
- W2789329162 creator A5030689354 @default.
- W2789329162 creator A5034157762 @default.
- W2789329162 creator A5045144626 @default.
- W2789329162 creator A5073966541 @default.
- W2789329162 date "2018-03-01" @default.
- W2789329162 modified "2023-10-17" @default.
- W2789329162 title "Geographically weighted regression based methods for merging satellite and gauge precipitation" @default.
- W2789329162 cites W1522265489 @default.
- W2789329162 cites W1523376119 @default.
- W2789329162 cites W1871969869 @default.
- W2789329162 cites W1933119446 @default.
- W2789329162 cites W1965327443 @default.
- W2789329162 cites W1967802619 @default.
- W2789329162 cites W1980079746 @default.
- W2789329162 cites W1986202441 @default.
- W2789329162 cites W1988872213 @default.
- W2789329162 cites W1990364733 @default.
- W2789329162 cites W1993699518 @default.
- W2789329162 cites W1995622703 @default.
- W2789329162 cites W1999970628 @default.
- W2789329162 cites W2000330466 @default.
- W2789329162 cites W2001617852 @default.
- W2789329162 cites W2008820148 @default.
- W2789329162 cites W2009907489 @default.
- W2789329162 cites W2022349500 @default.
- W2789329162 cites W2026048615 @default.
- W2789329162 cites W2033384531 @default.
- W2789329162 cites W2045066934 @default.
- W2789329162 cites W2047120335 @default.
- W2789329162 cites W2049472359 @default.
- W2789329162 cites W2050483804 @default.
- W2789329162 cites W2056147020 @default.
- W2789329162 cites W2056439781 @default.
- W2789329162 cites W2058673275 @default.
- W2789329162 cites W2062698821 @default.
- W2789329162 cites W2066089156 @default.
- W2789329162 cites W2073298425 @default.
- W2789329162 cites W2079105576 @default.
- W2789329162 cites W2079423106 @default.
- W2789329162 cites W2089149595 @default.
- W2789329162 cites W2089603617 @default.
- W2789329162 cites W2093654206 @default.
- W2789329162 cites W2101394945 @default.
- W2789329162 cites W2105090634 @default.
- W2789329162 cites W2105965591 @default.
- W2789329162 cites W2116149712 @default.
- W2789329162 cites W2119803205 @default.
- W2789329162 cites W2127442055 @default.
- W2789329162 cites W2133297572 @default.
- W2789329162 cites W2136897169 @default.
- W2789329162 cites W2143956628 @default.
- W2789329162 cites W2148169128 @default.
- W2789329162 cites W2165876298 @default.
- W2789329162 cites W2170396766 @default.
- W2789329162 cites W2264487822 @default.
- W2789329162 cites W2269378266 @default.
- W2789329162 cites W2288228418 @default.
- W2789329162 cites W2314562860 @default.
- W2789329162 cites W2337278311 @default.
- W2789329162 cites W2338137192 @default.
- W2789329162 cites W2341413677 @default.
- W2789329162 cites W2341463605 @default.
- W2789329162 cites W235951013 @default.
- W2789329162 cites W2397311736 @default.
- W2789329162 cites W2460118061 @default.
- W2789329162 cites W2472373273 @default.
- W2789329162 cites W2515561179 @default.
- W2789329162 cites W2548983287 @default.
- W2789329162 cites W2550313072 @default.
- W2789329162 cites W2550538055 @default.
- W2789329162 cites W2551529635 @default.
- W2789329162 cites W2559999825 @default.
- W2789329162 cites W2589220698 @default.
- W2789329162 cites W2592634072 @default.
- W2789329162 cites W2599875474 @default.
- W2789329162 cites W2600887561 @default.
- W2789329162 cites W2603164470 @default.
- W2789329162 cites W2613535079 @default.
- W2789329162 cites W2753753116 @default.
- W2789329162 cites W2769852091 @default.
- W2789329162 cites W280646573 @default.
- W2789329162 cites W3123322087 @default.
- W2789329162 doi "https://doi.org/10.1016/j.jhydrol.2018.01.042" @default.
- W2789329162 hasPublicationYear "2018" @default.
- W2789329162 type Work @default.
- W2789329162 sameAs 2789329162 @default.
- W2789329162 citedByCount "164" @default.
- W2789329162 countsByYear W27893291622018 @default.
- W2789329162 countsByYear W27893291622019 @default.
- W2789329162 countsByYear W27893291622020 @default.
- W2789329162 countsByYear W27893291622021 @default.
- W2789329162 countsByYear W27893291622022 @default.
- W2789329162 countsByYear W27893291622023 @default.
- W2789329162 crossrefType "journal-article" @default.