Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789331392> ?p ?o ?g. }
- W2789331392 abstract "Geometric matrix completion (GMC) has been proposed for recommendation by integrating the relationship (link) graphs among users/items into matrix completion (MC). Traditional GMC methods typically adopt graph regularization to impose smoothness priors for MC. Recently, geometric deep learning on graphs (GDLG) is proposed to solve the GMC problem, showing better performance than existing GMC methods including traditional graph regularization based methods. To the best of our knowledge, there exists only one GDLG method for GMC, which is called RMGCNN. RMGCNN combines graph convolutional network (GCN) and recurrent neural network (RNN) together for GMC. In the original work of RMGCNN, RMGCNN demonstrates better performance than pure GCN-based method. In this paper, we propose a new GMC method, called convolutional geometric matrix completion (CGMC), for recommendation with graphs among users/items. CGMC is a pure GCN-based method with a newly designed graph convolutional network. Experimental results on real datasets show that CGMC can outperform other state-of-the-art methods including RMGCNN in terms of both accuracy and speed." @default.
- W2789331392 created "2018-03-29" @default.
- W2789331392 creator A5000767481 @default.
- W2789331392 creator A5060818696 @default.
- W2789331392 creator A5074238860 @default.
- W2789331392 creator A5076178534 @default.
- W2789331392 date "2018-03-02" @default.
- W2789331392 modified "2023-09-27" @default.
- W2789331392 title "Convolutional Geometric Matrix Completion" @default.
- W2789331392 cites W1501856433 @default.
- W2789331392 cites W1530276735 @default.
- W2789331392 cites W1544449255 @default.
- W2789331392 cites W1563739387 @default.
- W2789331392 cites W1578099820 @default.
- W2789331392 cites W1980287119 @default.
- W2789331392 cites W2054141820 @default.
- W2789331392 cites W2054553473 @default.
- W2789331392 cites W2064675550 @default.
- W2789331392 cites W2097308346 @default.
- W2789331392 cites W2101491865 @default.
- W2789331392 cites W2103972604 @default.
- W2789331392 cites W2108119513 @default.
- W2789331392 cites W2108753466 @default.
- W2789331392 cites W2110325612 @default.
- W2789331392 cites W2110531331 @default.
- W2789331392 cites W2120387782 @default.
- W2789331392 cites W2120872934 @default.
- W2789331392 cites W2124608575 @default.
- W2789331392 cites W2144487656 @default.
- W2789331392 cites W2156718197 @default.
- W2789331392 cites W2158787690 @default.
- W2789331392 cites W2186878252 @default.
- W2789331392 cites W2350220533 @default.
- W2789331392 cites W2558748708 @default.
- W2789331392 cites W2592246480 @default.
- W2789331392 cites W2606780347 @default.
- W2789331392 cites W2624407581 @default.
- W2789331392 cites W2624431344 @default.
- W2789331392 cites W2797540493 @default.
- W2789331392 cites W281665770 @default.
- W2789331392 cites W2890703109 @default.
- W2789331392 cites W2899771611 @default.
- W2789331392 cites W2900763475 @default.
- W2789331392 cites W2950898568 @default.
- W2789331392 cites W2962702353 @default.
- W2789331392 cites W2962767366 @default.
- W2789331392 cites W2963043672 @default.
- W2789331392 cites W2963354044 @default.
- W2789331392 cites W2963581908 @default.
- W2789331392 cites W2963858333 @default.
- W2789331392 cites W2963893572 @default.
- W2789331392 cites W2964015378 @default.
- W2789331392 cites W2964145825 @default.
- W2789331392 cites W2964311892 @default.
- W2789331392 cites W2964321699 @default.
- W2789331392 cites W2964338167 @default.
- W2789331392 cites W2969215180 @default.
- W2789331392 cites W3100848837 @default.
- W2789331392 cites W637153065 @default.
- W2789331392 cites W6908809 @default.
- W2789331392 hasPublicationYear "2018" @default.
- W2789331392 type Work @default.
- W2789331392 sameAs 2789331392 @default.
- W2789331392 citedByCount "5" @default.
- W2789331392 countsByYear W27893313922019 @default.
- W2789331392 countsByYear W27893313922020 @default.
- W2789331392 countsByYear W27893313922021 @default.
- W2789331392 crossrefType "posted-content" @default.
- W2789331392 hasAuthorship W2789331392A5000767481 @default.
- W2789331392 hasAuthorship W2789331392A5060818696 @default.
- W2789331392 hasAuthorship W2789331392A5074238860 @default.
- W2789331392 hasAuthorship W2789331392A5076178534 @default.
- W2789331392 hasConcept C106487976 @default.
- W2789331392 hasConcept C11413529 @default.
- W2789331392 hasConcept C119857082 @default.
- W2789331392 hasConcept C121332964 @default.
- W2789331392 hasConcept C132525143 @default.
- W2789331392 hasConcept C153180895 @default.
- W2789331392 hasConcept C154945302 @default.
- W2789331392 hasConcept C159985019 @default.
- W2789331392 hasConcept C163716315 @default.
- W2789331392 hasConcept C192562407 @default.
- W2789331392 hasConcept C2776135515 @default.
- W2789331392 hasConcept C2778459887 @default.
- W2789331392 hasConcept C41008148 @default.
- W2789331392 hasConcept C62520636 @default.
- W2789331392 hasConcept C80444323 @default.
- W2789331392 hasConcept C81363708 @default.
- W2789331392 hasConceptScore W2789331392C106487976 @default.
- W2789331392 hasConceptScore W2789331392C11413529 @default.
- W2789331392 hasConceptScore W2789331392C119857082 @default.
- W2789331392 hasConceptScore W2789331392C121332964 @default.
- W2789331392 hasConceptScore W2789331392C132525143 @default.
- W2789331392 hasConceptScore W2789331392C153180895 @default.
- W2789331392 hasConceptScore W2789331392C154945302 @default.
- W2789331392 hasConceptScore W2789331392C159985019 @default.
- W2789331392 hasConceptScore W2789331392C163716315 @default.
- W2789331392 hasConceptScore W2789331392C192562407 @default.
- W2789331392 hasConceptScore W2789331392C2776135515 @default.
- W2789331392 hasConceptScore W2789331392C2778459887 @default.