Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789354359> ?p ?o ?g. }
- W2789354359 endingPage "54" @default.
- W2789354359 startingPage "47" @default.
- W2789354359 abstract "A new strategy based on sampling error profile analysis (SEPA) combined with least absolute shrinkage and selection operator (SEPA-LASSO) was proposed. LASSO has been proven to be effective for multivariate calibration with automatic variable selection for high-dimensional data. However, in the previous research, the critical process of multivariate calibration by LASSO was an optimization of 1-norm turning parameter for a fixed sample set without considering the behaviors of variable selection by different subsets of samples. In the present work, Monte Carlo Sampling (MCS), the core of SEPA framework, is used to investigate various sub-models. Least angle regression (LAR) is used to solve LASSO, and various LAR iteration including certain number of variables could be obtained instead of choosing the numerical values of 1-norm turning parameters. SEPA-LASSO algorithm consists of plenty of loops. Under the SEPA framework and LAR algorithm, a number of LASSO sub-models with the same dimensions are built by MCS in each loop, the vote rule is used to determine the importance of variables and select them to build variable subsets. After running the loops, several subsets of variables are obtained and their error profile is used to choose the optimal subset of variables. The performance of SEPA-LASSO was evaluated by three near-infrared (NIR) datasets. The results show that the model built by SEPA-LASSO has excellent predictability and interpretability, compared with some commonly used multivariate calibration methods, such as principal component regression (PCR) and partial least squares (PLS), as well as some wavelength selection methods including LASSO, moving window partial least squares regression (MWPLSR), Monte Carlo uninformative variable elimination (MC-UVE), ordered homogeneity pursuit lasso (OHPL) and stability competitive adaptive reweighted sampling (SCARS)." @default.
- W2789354359 created "2018-03-29" @default.
- W2789354359 creator A5008207766 @default.
- W2789354359 creator A5008267939 @default.
- W2789354359 creator A5014238505 @default.
- W2789354359 creator A5021668029 @default.
- W2789354359 creator A5043054985 @default.
- W2789354359 creator A5043325120 @default.
- W2789354359 creator A5064412438 @default.
- W2789354359 creator A5084445623 @default.
- W2789354359 date "2018-04-01" @default.
- W2789354359 modified "2023-10-02" @default.
- W2789354359 title "A new strategy of least absolute shrinkage and selection operator coupled with sampling error profile analysis for wavelength selection" @default.
- W2789354359 cites W1274132922 @default.
- W2789354359 cites W1787041122 @default.
- W2789354359 cites W1966765091 @default.
- W2789354359 cites W1967587796 @default.
- W2789354359 cites W1968114170 @default.
- W2789354359 cites W1975579380 @default.
- W2789354359 cites W1980279252 @default.
- W2789354359 cites W1981594542 @default.
- W2789354359 cites W1986754794 @default.
- W2789354359 cites W1988478141 @default.
- W2789354359 cites W1993273815 @default.
- W2789354359 cites W1997240411 @default.
- W2789354359 cites W1997270149 @default.
- W2789354359 cites W2007808016 @default.
- W2789354359 cites W2008389665 @default.
- W2789354359 cites W2017422910 @default.
- W2789354359 cites W2018338598 @default.
- W2789354359 cites W2035277033 @default.
- W2789354359 cites W2036804696 @default.
- W2789354359 cites W2040277392 @default.
- W2789354359 cites W2042672252 @default.
- W2789354359 cites W2043689097 @default.
- W2789354359 cites W2049742464 @default.
- W2789354359 cites W2050769804 @default.
- W2789354359 cites W2051275357 @default.
- W2789354359 cites W2054403851 @default.
- W2789354359 cites W2056189883 @default.
- W2789354359 cites W2058041203 @default.
- W2789354359 cites W2059672887 @default.
- W2789354359 cites W2061593315 @default.
- W2789354359 cites W2063978378 @default.
- W2789354359 cites W2073188277 @default.
- W2789354359 cites W2073503722 @default.
- W2789354359 cites W2073994361 @default.
- W2789354359 cites W2076329415 @default.
- W2789354359 cites W2084169316 @default.
- W2789354359 cites W2085834676 @default.
- W2789354359 cites W2118026371 @default.
- W2789354359 cites W2125088150 @default.
- W2789354359 cites W2153491803 @default.
- W2789354359 cites W2159013696 @default.
- W2789354359 cites W2170539756 @default.
- W2789354359 cites W2231144898 @default.
- W2789354359 cites W2314640660 @default.
- W2789354359 cites W2328971175 @default.
- W2789354359 cites W2734484373 @default.
- W2789354359 cites W2749430712 @default.
- W2789354359 cites W2768770038 @default.
- W2789354359 cites W4234698323 @default.
- W2789354359 cites W865398354 @default.
- W2789354359 doi "https://doi.org/10.1016/j.chemolab.2018.02.007" @default.
- W2789354359 hasPublicationYear "2018" @default.
- W2789354359 type Work @default.
- W2789354359 sameAs 2789354359 @default.
- W2789354359 citedByCount "32" @default.
- W2789354359 countsByYear W27893543592018 @default.
- W2789354359 countsByYear W27893543592019 @default.
- W2789354359 countsByYear W27893543592020 @default.
- W2789354359 countsByYear W27893543592021 @default.
- W2789354359 countsByYear W27893543592022 @default.
- W2789354359 countsByYear W27893543592023 @default.
- W2789354359 crossrefType "journal-article" @default.
- W2789354359 hasAuthorship W2789354359A5008207766 @default.
- W2789354359 hasAuthorship W2789354359A5008267939 @default.
- W2789354359 hasAuthorship W2789354359A5014238505 @default.
- W2789354359 hasAuthorship W2789354359A5021668029 @default.
- W2789354359 hasAuthorship W2789354359A5043054985 @default.
- W2789354359 hasAuthorship W2789354359A5043325120 @default.
- W2789354359 hasAuthorship W2789354359A5064412438 @default.
- W2789354359 hasAuthorship W2789354359A5084445623 @default.
- W2789354359 hasConcept C105795698 @default.
- W2789354359 hasConcept C11413529 @default.
- W2789354359 hasConcept C126255220 @default.
- W2789354359 hasConcept C136764020 @default.
- W2789354359 hasConcept C148483581 @default.
- W2789354359 hasConcept C154945302 @default.
- W2789354359 hasConcept C165838908 @default.
- W2789354359 hasConcept C22354355 @default.
- W2789354359 hasConcept C2781067378 @default.
- W2789354359 hasConcept C33923547 @default.
- W2789354359 hasConcept C37616216 @default.
- W2789354359 hasConcept C41008148 @default.
- W2789354359 hasConceptScore W2789354359C105795698 @default.
- W2789354359 hasConceptScore W2789354359C11413529 @default.
- W2789354359 hasConceptScore W2789354359C126255220 @default.