Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789364130> ?p ?o ?g. }
- W2789364130 endingPage "867" @default.
- W2789364130 startingPage "853" @default.
- W2789364130 abstract "Nowadays multiple sensors are widely used to simultaneously monitor the degradation status of a unit. Because those sensor signals are often correlated and measure different characteristics of the same unit, effective fusion of such a diverse “gene pool” is an important step to better understanding the degradation process and producing a more accurate prediction of the remaining useful life. To address this issue, this article proposes a novel data fusion method that constructs a composite Health Index (HI) via the combination of multiple sensor signals for better characterizing the degradation process. In particular, we formulate the problem as indirect supervised learning and leverage the quantile regression to derive the optimal fusion coefficient. In this way, the prognostic performance of the proposed method is guaranteed. To the best of our knowledge, this is the first article that provides the theoretical analysis of the data fusion method for degradation modeling and prognostics. Simulation studies are conducted to evaluate the proposed method in different scenarios. A case study on the degradation of aircraft engines is also performed, which shows the superior performance of our method over existing HI-based methods." @default.
- W2789364130 created "2018-03-29" @default.
- W2789364130 creator A5025012113 @default.
- W2789364130 creator A5087013513 @default.
- W2789364130 date "2018-05-17" @default.
- W2789364130 modified "2023-10-17" @default.
- W2789364130 title "Statistical degradation modeling and prognostics of multiple sensor signals via data fusion: A composite health index approach" @default.
- W2789364130 cites W1479807131 @default.
- W2789364130 cites W1585926113 @default.
- W2789364130 cites W176292746 @default.
- W2789364130 cites W1916712930 @default.
- W2789364130 cites W1932372884 @default.
- W2789364130 cites W1978965153 @default.
- W2789364130 cites W1982286208 @default.
- W2789364130 cites W1985780394 @default.
- W2789364130 cites W1985827874 @default.
- W2789364130 cites W2006973656 @default.
- W2789364130 cites W2007655149 @default.
- W2789364130 cites W2022910500 @default.
- W2789364130 cites W2037838959 @default.
- W2789364130 cites W2042119239 @default.
- W2789364130 cites W2043129860 @default.
- W2789364130 cites W2045186954 @default.
- W2789364130 cites W2055873761 @default.
- W2789364130 cites W2058975225 @default.
- W2789364130 cites W2059401976 @default.
- W2789364130 cites W2059854373 @default.
- W2789364130 cites W2060965436 @default.
- W2789364130 cites W2067266460 @default.
- W2789364130 cites W2090749763 @default.
- W2789364130 cites W2096904991 @default.
- W2789364130 cites W2101328308 @default.
- W2789364130 cites W2108898839 @default.
- W2789364130 cites W2110007571 @default.
- W2789364130 cites W2112935810 @default.
- W2789364130 cites W2120841219 @default.
- W2789364130 cites W2130855329 @default.
- W2789364130 cites W2133832971 @default.
- W2789364130 cites W2142337341 @default.
- W2789364130 cites W2143568755 @default.
- W2789364130 cites W2149956719 @default.
- W2789364130 cites W2157457477 @default.
- W2789364130 cites W2157883849 @default.
- W2789364130 cites W2158449659 @default.
- W2789364130 cites W2160118356 @default.
- W2789364130 cites W2294172420 @default.
- W2789364130 cites W2524712998 @default.
- W2789364130 cites W2559655669 @default.
- W2789364130 cites W2599868532 @default.
- W2789364130 cites W2787894218 @default.
- W2789364130 cites W4232401276 @default.
- W2789364130 cites W4233921518 @default.
- W2789364130 cites W4249919990 @default.
- W2789364130 cites W4376454052 @default.
- W2789364130 doi "https://doi.org/10.1080/24725854.2018.1440673" @default.
- W2789364130 hasPublicationYear "2018" @default.
- W2789364130 type Work @default.
- W2789364130 sameAs 2789364130 @default.
- W2789364130 citedByCount "53" @default.
- W2789364130 countsByYear W27893641302019 @default.
- W2789364130 countsByYear W27893641302020 @default.
- W2789364130 countsByYear W27893641302021 @default.
- W2789364130 countsByYear W27893641302022 @default.
- W2789364130 countsByYear W27893641302023 @default.
- W2789364130 crossrefType "journal-article" @default.
- W2789364130 hasAuthorship W2789364130A5025012113 @default.
- W2789364130 hasAuthorship W2789364130A5087013513 @default.
- W2789364130 hasConcept C111919701 @default.
- W2789364130 hasConcept C119857082 @default.
- W2789364130 hasConcept C124101348 @default.
- W2789364130 hasConcept C127413603 @default.
- W2789364130 hasConcept C129364497 @default.
- W2789364130 hasConcept C138885662 @default.
- W2789364130 hasConcept C153083717 @default.
- W2789364130 hasConcept C154945302 @default.
- W2789364130 hasConcept C158525013 @default.
- W2789364130 hasConcept C200601418 @default.
- W2789364130 hasConcept C2779679103 @default.
- W2789364130 hasConcept C33954974 @default.
- W2789364130 hasConcept C41008148 @default.
- W2789364130 hasConcept C41895202 @default.
- W2789364130 hasConcept C76155785 @default.
- W2789364130 hasConcept C98045186 @default.
- W2789364130 hasConceptScore W2789364130C111919701 @default.
- W2789364130 hasConceptScore W2789364130C119857082 @default.
- W2789364130 hasConceptScore W2789364130C124101348 @default.
- W2789364130 hasConceptScore W2789364130C127413603 @default.
- W2789364130 hasConceptScore W2789364130C129364497 @default.
- W2789364130 hasConceptScore W2789364130C138885662 @default.
- W2789364130 hasConceptScore W2789364130C153083717 @default.
- W2789364130 hasConceptScore W2789364130C154945302 @default.
- W2789364130 hasConceptScore W2789364130C158525013 @default.
- W2789364130 hasConceptScore W2789364130C200601418 @default.
- W2789364130 hasConceptScore W2789364130C2779679103 @default.
- W2789364130 hasConceptScore W2789364130C33954974 @default.
- W2789364130 hasConceptScore W2789364130C41008148 @default.
- W2789364130 hasConceptScore W2789364130C41895202 @default.
- W2789364130 hasConceptScore W2789364130C76155785 @default.