Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789406948> ?p ?o ?g. }
- W2789406948 endingPage "98" @default.
- W2789406948 startingPage "88" @default.
- W2789406948 abstract "Automatic updating of land use/cover change (LUCC) databases using high spatial resolution images (HSRI) is important for environmental monitoring and policy making, especially for coastal areas that connect the land and coast and that tend to change frequently. Many object-based change detection methods are proposed, especially those combining historical LUCC with HSRI. However, the scale parameter(s) segmenting the serial temporal images, which directly determines the average object size, is hard to choose without experts’ intervention. And the samples transferred from historical LUCC also need experts’ intervention to avoid insufficient or wrong samples. With respect to the scale parameter(s) choosing, a Scale Self-Adapting Segmentation (SSAS) approach based on the exponential sampling of a scale parameter and location of the local maximum of a weighted local variance was proposed to determine the scale selection problem when segmenting images constrained by LUCC for detecting changes. With respect to the samples transferring, Knowledge Transfer (KT), a classifier trained on historical images with LUCC and applied in the classification of updated images, was also proposed. Comparison experiments were conducted in a coastal area of Zhujiang, China, using SPOT 5 images acquired in 2005 and 2010. The results reveal that (1) SSAS can segment images more effectively without intervention of experts. (2) KT can also reach the maximum accuracy of samples transfer without experts’ intervention. Strategy SSAS + KT would be a good choice if the temporal historical image and LUCC match, and the historical image and updated image are obtained from the same resource." @default.
- W2789406948 created "2018-03-29" @default.
- W2789406948 creator A5002795351 @default.
- W2789406948 creator A5017175648 @default.
- W2789406948 creator A5036109302 @default.
- W2789406948 creator A5058304491 @default.
- W2789406948 date "2018-07-01" @default.
- W2789406948 modified "2023-10-05" @default.
- W2789406948 title "A scale self-adapting segmentation approach and knowledge transfer for automatically updating land use/cover change databases using high spatial resolution images" @default.
- W2789406948 cites W1964262728 @default.
- W2789406948 cites W1964669384 @default.
- W2789406948 cites W1969975218 @default.
- W2789406948 cites W1978607937 @default.
- W2789406948 cites W1993763771 @default.
- W2789406948 cites W1995280601 @default.
- W2789406948 cites W1997305839 @default.
- W2789406948 cites W2002568643 @default.
- W2789406948 cites W2011572981 @default.
- W2789406948 cites W2021909772 @default.
- W2789406948 cites W2028546171 @default.
- W2789406948 cites W2041524230 @default.
- W2789406948 cites W2042136828 @default.
- W2789406948 cites W2049908216 @default.
- W2789406948 cites W2051084846 @default.
- W2789406948 cites W2051103995 @default.
- W2789406948 cites W2059080117 @default.
- W2789406948 cites W2061240006 @default.
- W2789406948 cites W2072289174 @default.
- W2789406948 cites W2082081125 @default.
- W2789406948 cites W2085289201 @default.
- W2789406948 cites W2095028777 @default.
- W2789406948 cites W2103079830 @default.
- W2789406948 cites W2105058098 @default.
- W2789406948 cites W2105554350 @default.
- W2789406948 cites W2107450528 @default.
- W2789406948 cites W2108204502 @default.
- W2789406948 cites W2109044582 @default.
- W2789406948 cites W2111435577 @default.
- W2789406948 cites W2132222679 @default.
- W2789406948 cites W2138916851 @default.
- W2789406948 cites W2145022968 @default.
- W2789406948 cites W2148878936 @default.
- W2789406948 cites W2153633422 @default.
- W2789406948 cites W2154351534 @default.
- W2789406948 cites W2157026765 @default.
- W2789406948 cites W2243481691 @default.
- W2789406948 cites W2308318555 @default.
- W2789406948 cites W2325171775 @default.
- W2789406948 cites W2610884537 @default.
- W2789406948 cites W2623768474 @default.
- W2789406948 cites W2775562312 @default.
- W2789406948 cites W3023408402 @default.
- W2789406948 cites W318364127 @default.
- W2789406948 doi "https://doi.org/10.1016/j.jag.2018.03.001" @default.
- W2789406948 hasPublicationYear "2018" @default.
- W2789406948 type Work @default.
- W2789406948 sameAs 2789406948 @default.
- W2789406948 citedByCount "11" @default.
- W2789406948 countsByYear W27894069482019 @default.
- W2789406948 countsByYear W27894069482020 @default.
- W2789406948 countsByYear W27894069482021 @default.
- W2789406948 countsByYear W27894069482022 @default.
- W2789406948 countsByYear W27894069482023 @default.
- W2789406948 crossrefType "journal-article" @default.
- W2789406948 hasAuthorship W2789406948A5002795351 @default.
- W2789406948 hasAuthorship W2789406948A5017175648 @default.
- W2789406948 hasAuthorship W2789406948A5036109302 @default.
- W2789406948 hasAuthorship W2789406948A5058304491 @default.
- W2789406948 hasBestOaLocation W27894069481 @default.
- W2789406948 hasConcept C124101348 @default.
- W2789406948 hasConcept C127413603 @default.
- W2789406948 hasConcept C147176958 @default.
- W2789406948 hasConcept C153180895 @default.
- W2789406948 hasConcept C154945302 @default.
- W2789406948 hasConcept C160633673 @default.
- W2789406948 hasConcept C203595873 @default.
- W2789406948 hasConcept C205372480 @default.
- W2789406948 hasConcept C205649164 @default.
- W2789406948 hasConcept C2778755073 @default.
- W2789406948 hasConcept C2780648208 @default.
- W2789406948 hasConcept C2781238097 @default.
- W2789406948 hasConcept C41008148 @default.
- W2789406948 hasConcept C4792198 @default.
- W2789406948 hasConcept C58640448 @default.
- W2789406948 hasConcept C62649853 @default.
- W2789406948 hasConcept C89600930 @default.
- W2789406948 hasConcept C95623464 @default.
- W2789406948 hasConceptScore W2789406948C124101348 @default.
- W2789406948 hasConceptScore W2789406948C127413603 @default.
- W2789406948 hasConceptScore W2789406948C147176958 @default.
- W2789406948 hasConceptScore W2789406948C153180895 @default.
- W2789406948 hasConceptScore W2789406948C154945302 @default.
- W2789406948 hasConceptScore W2789406948C160633673 @default.
- W2789406948 hasConceptScore W2789406948C203595873 @default.
- W2789406948 hasConceptScore W2789406948C205372480 @default.
- W2789406948 hasConceptScore W2789406948C205649164 @default.
- W2789406948 hasConceptScore W2789406948C2778755073 @default.
- W2789406948 hasConceptScore W2789406948C2780648208 @default.