Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789427148> ?p ?o ?g. }
- W2789427148 endingPage "12952" @default.
- W2789427148 startingPage "12933" @default.
- W2789427148 abstract "Abstract. Eastern China (27–41∘ N, 110–123∘ E) is heavily polluted by nitrogen dioxide (NO2), particulate matter with aerodynamic diameter below 2.5 µm (PM2.5), and other air pollutants. These pollutants vary on a variety of temporal and spatial scales, with many temporal scales that are nonperiodic and nonstationary, challenging proper quantitative characterization and visualization. This study uses a newly compiled EOF–EEMD analysis visualization package to evaluate the spatiotemporal variability of ground-level NO2, PM2.5, and their associations with meteorological processes over Eastern China in fall–winter 2013. Applying the package to observed hourly pollutant data reveals a primary spatial pattern representing Eastern China synchronous variation in time, which is dominated by diurnal variability with a much weaker day-to-day signal. A secondary spatial mode, representing north–south opposing changes in time with no constant period, is characterized by wind-related dilution or a buildup of pollutants from one day to another. We further evaluate simulations of nested GEOS-Chem v9-02 and WRF/CMAQ v5.0.1 in capturing the spatiotemporal variability of pollutants. GEOS-Chem underestimates NO2 by about 17 µg m−3 and PM2.5 by 35 µg m−3 on average over fall–winter 2013. It reproduces the diurnal variability for both pollutants. For the day-to-day variation, GEOS-Chem reproduces the observed north–south contrasting mode for both pollutants but not the Eastern China synchronous mode (especially for NO2). The model errors are due to a first model layer too thick (about 130 m) to capture the near-surface vertical gradient, deficiencies in the nighttime nitrogen chemistry in the first layer, and missing secondary organic aerosols and anthropogenic dust. CMAQ overestimates the diurnal cycle of pollutants due to too-weak boundary layer mixing, especially in the nighttime, and overestimates NO2 by about 30 µg m−3 and PM2.5 by 60 µg m−3. For the day-to-day variability, CMAQ reproduces the observed Eastern China synchronous mode but not the north–south opposing mode of NO2. Both models capture the day-to-day variability of PM2.5 better than that of NO2. These results shed light on model improvement. The EOF–EEMD package is freely available for noncommercial uses." @default.
- W2789427148 created "2018-03-29" @default.
- W2789427148 creator A5001541316 @default.
- W2789427148 creator A5006542450 @default.
- W2789427148 creator A5010778977 @default.
- W2789427148 creator A5021680466 @default.
- W2789427148 creator A5039837606 @default.
- W2789427148 creator A5057365386 @default.
- W2789427148 creator A5064610209 @default.
- W2789427148 creator A5068280779 @default.
- W2789427148 creator A5070607975 @default.
- W2789427148 creator A5077886327 @default.
- W2789427148 creator A5083540709 @default.
- W2789427148 creator A5087187626 @default.
- W2789427148 creator A5090656265 @default.
- W2789427148 date "2018-09-07" @default.
- W2789427148 modified "2023-10-17" @default.
- W2789427148 title "Spatiotemporal variability of NO<sub>2</sub> and PM<sub>2.5</sub> over Eastern China: observational and model analyses with a novel statistical method" @default.
- W2789427148 cites W1180655949 @default.
- W2789427148 cites W181246441 @default.
- W2789427148 cites W1975395764 @default.
- W2789427148 cites W1979006455 @default.
- W2789427148 cites W1984176657 @default.
- W2789427148 cites W1985621115 @default.
- W2789427148 cites W2007221293 @default.
- W2789427148 cites W2014859977 @default.
- W2789427148 cites W2029211844 @default.
- W2789427148 cites W2032071354 @default.
- W2789427148 cites W2045412781 @default.
- W2789427148 cites W2045435859 @default.
- W2789427148 cites W2053450084 @default.
- W2789427148 cites W2053827983 @default.
- W2789427148 cites W2056728814 @default.
- W2789427148 cites W2058464886 @default.
- W2789427148 cites W2082481714 @default.
- W2789427148 cites W2092546554 @default.
- W2789427148 cites W2094642226 @default.
- W2789427148 cites W2095525251 @default.
- W2789427148 cites W2098551558 @default.
- W2789427148 cites W2106665847 @default.
- W2789427148 cites W2109254960 @default.
- W2789427148 cites W2109760930 @default.
- W2789427148 cites W2110885569 @default.
- W2789427148 cites W2117560289 @default.
- W2789427148 cites W2122470043 @default.
- W2789427148 cites W2125634715 @default.
- W2789427148 cites W2134013743 @default.
- W2789427148 cites W2157486648 @default.
- W2789427148 cites W2158253265 @default.
- W2789427148 cites W2161621332 @default.
- W2789427148 cites W2165242333 @default.
- W2789427148 cites W2166192216 @default.
- W2789427148 cites W2168165748 @default.
- W2789427148 cites W2171209545 @default.
- W2789427148 cites W2178483954 @default.
- W2789427148 cites W2207738030 @default.
- W2789427148 cites W2293854311 @default.
- W2789427148 cites W2491308859 @default.
- W2789427148 cites W2509924488 @default.
- W2789427148 cites W2534107759 @default.
- W2789427148 cites W2537132227 @default.
- W2789427148 cites W2581321420 @default.
- W2789427148 cites W2582589896 @default.
- W2789427148 cites W276808286 @default.
- W2789427148 cites W3143437408 @default.
- W2789427148 cites W4240464792 @default.
- W2789427148 cites W590735017 @default.
- W2789427148 cites W897295814 @default.
- W2789427148 doi "https://doi.org/10.5194/acp-18-12933-2018" @default.
- W2789427148 hasPublicationYear "2018" @default.
- W2789427148 type Work @default.
- W2789427148 sameAs 2789427148 @default.
- W2789427148 citedByCount "39" @default.
- W2789427148 countsByYear W27894271482018 @default.
- W2789427148 countsByYear W27894271482019 @default.
- W2789427148 countsByYear W27894271482020 @default.
- W2789427148 countsByYear W27894271482021 @default.
- W2789427148 countsByYear W27894271482022 @default.
- W2789427148 countsByYear W27894271482023 @default.
- W2789427148 crossrefType "journal-article" @default.
- W2789427148 hasAuthorship W2789427148A5001541316 @default.
- W2789427148 hasAuthorship W2789427148A5006542450 @default.
- W2789427148 hasAuthorship W2789427148A5010778977 @default.
- W2789427148 hasAuthorship W2789427148A5021680466 @default.
- W2789427148 hasAuthorship W2789427148A5039837606 @default.
- W2789427148 hasAuthorship W2789427148A5057365386 @default.
- W2789427148 hasAuthorship W2789427148A5064610209 @default.
- W2789427148 hasAuthorship W2789427148A5068280779 @default.
- W2789427148 hasAuthorship W2789427148A5070607975 @default.
- W2789427148 hasAuthorship W2789427148A5077886327 @default.
- W2789427148 hasAuthorship W2789427148A5083540709 @default.
- W2789427148 hasAuthorship W2789427148A5087187626 @default.
- W2789427148 hasAuthorship W2789427148A5090656265 @default.
- W2789427148 hasBestOaLocation W27894271481 @default.
- W2789427148 hasConcept C105795698 @default.
- W2789427148 hasConcept C121332964 @default.
- W2789427148 hasConcept C127313418 @default.
- W2789427148 hasConcept C133204551 @default.