Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789435880> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2789435880 endingPage "118" @default.
- W2789435880 startingPage "107" @default.
- W2789435880 abstract "Abstract While traditional networks depend on a fully distributed control plane, Software Defined Networks (SDNs), the rapidly emerging area in computer networking, utilize a centralized control plane. SDNs bring in many benefits such as fine-grained control, possibility of optimal routing, and resource management within the network. As a result, SDNs find wider deployments in certain segments of networking such as data center networks. In addition, SDN approach is a potential candidate for the control plane design in 5G networks. Despite the benefits, SDNs face certain issues such as the possibility of single point failure, the communication overhead between switches and controllers, and more importantly the security as well as trustability of the control plane. Due to the centralized nature of the control plane, it is important to detect the presence of compromised control plane in an SDN. Compromised control plane refers to the situation where one or more of the controllers in an SDN are compromised by malwares, resulting in deviation from the normal control plane behavior. Developing new solutions for detecting the presence of compromised controllers is exacerbated by the lack of appropriate SDN traffic data sets. As a result, existing literature lacks solutions to detect the presence of a compromised control plane. Of particular interest is the case where SDN controller-specific threats hide their presence from end-users and administrators of the network. Our contributions in this paper include the following: (i) identification of five threat vectors that represent compromised controllers in SDNs, (ii) creation of a large volume of OpenFlow traffic traces in order for studying various SDN threat vectors, (iii) proposal of nine novel OpenFlow-specific features that capture the above mentioned threat vectors, and (iv) study of machine-learning based detection technique for compromised control plane using six classifiers. The OpenFlow traffic trace data set, we created, is made available for the use of larger research community. We carried out detailed experimental studies that show the efficacy of our scheme in detecting the presence of compromised controllers. Our results indicate that Random Forest is the most suitable machine learning classifier that provides about 97% accuracy." @default.
- W2789435880 created "2018-03-29" @default.
- W2789435880 creator A5053446403 @default.
- W2789435880 creator A5056037477 @default.
- W2789435880 creator A5059900649 @default.
- W2789435880 date "2018-06-01" @default.
- W2789435880 modified "2023-10-02" @default.
- W2789435880 title "On detecting compromised controller in software defined networks" @default.
- W2789435880 cites W1905251226 @default.
- W2789435880 cites W1984451560 @default.
- W2789435880 cites W2112700013 @default.
- W2789435880 cites W2137345105 @default.
- W2789435880 cites W2157895134 @default.
- W2789435880 cites W2275015310 @default.
- W2789435880 cites W2536380892 @default.
- W2789435880 cites W2581855760 @default.
- W2789435880 cites W2758509082 @default.
- W2789435880 cites W4233458882 @default.
- W2789435880 doi "https://doi.org/10.1016/j.comnet.2018.03.021" @default.
- W2789435880 hasPublicationYear "2018" @default.
- W2789435880 type Work @default.
- W2789435880 sameAs 2789435880 @default.
- W2789435880 citedByCount "15" @default.
- W2789435880 countsByYear W27894358802019 @default.
- W2789435880 countsByYear W27894358802020 @default.
- W2789435880 countsByYear W27894358802021 @default.
- W2789435880 countsByYear W27894358802022 @default.
- W2789435880 countsByYear W27894358802023 @default.
- W2789435880 crossrefType "journal-article" @default.
- W2789435880 hasAuthorship W2789435880A5053446403 @default.
- W2789435880 hasAuthorship W2789435880A5056037477 @default.
- W2789435880 hasAuthorship W2789435880A5059900649 @default.
- W2789435880 hasConcept C111919701 @default.
- W2789435880 hasConcept C149635348 @default.
- W2789435880 hasConcept C203479927 @default.
- W2789435880 hasConcept C2777904410 @default.
- W2789435880 hasConcept C31258907 @default.
- W2789435880 hasConcept C41008148 @default.
- W2789435880 hasConcept C6557445 @default.
- W2789435880 hasConcept C77270119 @default.
- W2789435880 hasConcept C79403827 @default.
- W2789435880 hasConcept C86803240 @default.
- W2789435880 hasConceptScore W2789435880C111919701 @default.
- W2789435880 hasConceptScore W2789435880C149635348 @default.
- W2789435880 hasConceptScore W2789435880C203479927 @default.
- W2789435880 hasConceptScore W2789435880C2777904410 @default.
- W2789435880 hasConceptScore W2789435880C31258907 @default.
- W2789435880 hasConceptScore W2789435880C41008148 @default.
- W2789435880 hasConceptScore W2789435880C6557445 @default.
- W2789435880 hasConceptScore W2789435880C77270119 @default.
- W2789435880 hasConceptScore W2789435880C79403827 @default.
- W2789435880 hasConceptScore W2789435880C86803240 @default.
- W2789435880 hasLocation W27894358801 @default.
- W2789435880 hasOpenAccess W2789435880 @default.
- W2789435880 hasPrimaryLocation W27894358801 @default.
- W2789435880 hasRelatedWork W1519398290 @default.
- W2789435880 hasRelatedWork W1646764293 @default.
- W2789435880 hasRelatedWork W2057120045 @default.
- W2789435880 hasRelatedWork W2363207358 @default.
- W2789435880 hasRelatedWork W2374512474 @default.
- W2789435880 hasRelatedWork W2797056518 @default.
- W2789435880 hasRelatedWork W2951861766 @default.
- W2789435880 hasRelatedWork W3020243440 @default.
- W2789435880 hasRelatedWork W3032948302 @default.
- W2789435880 hasRelatedWork W3088427045 @default.
- W2789435880 hasVolume "137" @default.
- W2789435880 isParatext "false" @default.
- W2789435880 isRetracted "false" @default.
- W2789435880 magId "2789435880" @default.
- W2789435880 workType "article" @default.