Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789541213> ?p ?o ?g. }
- W2789541213 endingPage "57" @default.
- W2789541213 startingPage "52" @default.
- W2789541213 abstract "Background and purposeIn radiation therapy, defining the precise borders of cancerous tissues and adjacent normal organs has a significant effect on the therapy outcome. Deformable models offer a unique and robust approach to medical image segmentation. The objective of this study was to investigate the reliability of segmenting organs-at-risk (OARs) using three well-known local region-based level-set techniques.Methods and materialsA total of 1340 non-enhanced and enhanced planning computed tomography (CT) slices of eight OARs (the bladder, rectum, kidney, clavicle, humeral head, femoral head, spinal cord, and lung) were segmented by using local region-based active contour, local Chan-Vese, and local Gaussian distribution models. Quantitative metrics, namely Hausdorff Distance (HD), Mean Absolute Distance (MAD), Dice coefficient (DC), Percentage Volume Difference (PVD) and Absolute Volumetric Difference (AVD), were adopted to measure the correspondence between detected contours and the manual references drawn by experts.ResultsThe results showed the feasibility of using local region-based active contour methods for defining six of the OARs (the bladder, kidney, clavicle, humeral head, spinal cord, and lung) when adequate intensity information is available. While the most accurate results were achieved for lung (DC = 0.94) and humeral head (DC = 0.92), a poor level of agreement (DC < 0.7) was obtained for both rectum and femur.ConclusionIncorporating local statistical information in level set methods yields to satisfactory results of OARs delineation when adequate intensity information exists between the organs. However, the complexity of adjacent organs and the lack of distinct boundaries would result in a considerable segmentation error." @default.
- W2789541213 created "2018-03-29" @default.
- W2789541213 creator A5014281789 @default.
- W2789541213 creator A5021681420 @default.
- W2789541213 creator A5033902251 @default.
- W2789541213 creator A5038131163 @default.
- W2789541213 creator A5055157187 @default.
- W2789541213 creator A5060969260 @default.
- W2789541213 creator A5085556956 @default.
- W2789541213 creator A5087441358 @default.
- W2789541213 date "2018-01-01" @default.
- W2789541213 modified "2023-10-02" @default.
- W2789541213 title "Evaluation of localized region-based segmentation algorithms for CT-based delineation of organs at risk in radiotherapy" @default.
- W2789541213 cites W1005636916 @default.
- W2789541213 cites W1499935599 @default.
- W2789541213 cites W1966764112 @default.
- W2789541213 cites W1971309979 @default.
- W2789541213 cites W1975841177 @default.
- W2789541213 cites W1985161468 @default.
- W2789541213 cites W1991113069 @default.
- W2789541213 cites W2002489794 @default.
- W2789541213 cites W2007387522 @default.
- W2789541213 cites W2019929699 @default.
- W2789541213 cites W2026620973 @default.
- W2789541213 cites W2032254902 @default.
- W2789541213 cites W2046098306 @default.
- W2789541213 cites W2051477566 @default.
- W2789541213 cites W2056988552 @default.
- W2789541213 cites W2060927254 @default.
- W2789541213 cites W2065350495 @default.
- W2789541213 cites W2068131454 @default.
- W2789541213 cites W2073728234 @default.
- W2789541213 cites W2082425609 @default.
- W2789541213 cites W2092956183 @default.
- W2789541213 cites W2104095591 @default.
- W2789541213 cites W2115664739 @default.
- W2789541213 cites W2116040950 @default.
- W2789541213 cites W2137063708 @default.
- W2789541213 cites W2143005321 @default.
- W2789541213 cites W2143090675 @default.
- W2789541213 cites W2168650498 @default.
- W2789541213 cites W2509140019 @default.
- W2789541213 cites W2550663665 @default.
- W2789541213 cites W2565371313 @default.
- W2789541213 cites W2590099728 @default.
- W2789541213 cites W2560852850 @default.
- W2789541213 doi "https://doi.org/10.1016/j.phro.2018.02.003" @default.
- W2789541213 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7807550" @default.
- W2789541213 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33458369" @default.
- W2789541213 hasPublicationYear "2018" @default.
- W2789541213 type Work @default.
- W2789541213 sameAs 2789541213 @default.
- W2789541213 citedByCount "12" @default.
- W2789541213 countsByYear W27895412132018 @default.
- W2789541213 countsByYear W27895412132019 @default.
- W2789541213 countsByYear W27895412132020 @default.
- W2789541213 countsByYear W27895412132022 @default.
- W2789541213 crossrefType "journal-article" @default.
- W2789541213 hasAuthorship W2789541213A5014281789 @default.
- W2789541213 hasAuthorship W2789541213A5021681420 @default.
- W2789541213 hasAuthorship W2789541213A5033902251 @default.
- W2789541213 hasAuthorship W2789541213A5038131163 @default.
- W2789541213 hasAuthorship W2789541213A5055157187 @default.
- W2789541213 hasAuthorship W2789541213A5060969260 @default.
- W2789541213 hasAuthorship W2789541213A5085556956 @default.
- W2789541213 hasAuthorship W2789541213A5087441358 @default.
- W2789541213 hasBestOaLocation W27895412131 @default.
- W2789541213 hasConcept C105702510 @default.
- W2789541213 hasConcept C11413529 @default.
- W2789541213 hasConcept C124504099 @default.
- W2789541213 hasConcept C141898687 @default.
- W2789541213 hasConcept C154945302 @default.
- W2789541213 hasConcept C163892561 @default.
- W2789541213 hasConcept C2779100257 @default.
- W2789541213 hasConcept C2780193326 @default.
- W2789541213 hasConcept C2989005 @default.
- W2789541213 hasConcept C33923547 @default.
- W2789541213 hasConcept C41008148 @default.
- W2789541213 hasConcept C71924100 @default.
- W2789541213 hasConcept C89600930 @default.
- W2789541213 hasConceptScore W2789541213C105702510 @default.
- W2789541213 hasConceptScore W2789541213C11413529 @default.
- W2789541213 hasConceptScore W2789541213C124504099 @default.
- W2789541213 hasConceptScore W2789541213C141898687 @default.
- W2789541213 hasConceptScore W2789541213C154945302 @default.
- W2789541213 hasConceptScore W2789541213C163892561 @default.
- W2789541213 hasConceptScore W2789541213C2779100257 @default.
- W2789541213 hasConceptScore W2789541213C2780193326 @default.
- W2789541213 hasConceptScore W2789541213C2989005 @default.
- W2789541213 hasConceptScore W2789541213C33923547 @default.
- W2789541213 hasConceptScore W2789541213C41008148 @default.
- W2789541213 hasConceptScore W2789541213C71924100 @default.
- W2789541213 hasConceptScore W2789541213C89600930 @default.
- W2789541213 hasLocation W27895412131 @default.
- W2789541213 hasLocation W27895412132 @default.
- W2789541213 hasLocation W27895412133 @default.
- W2789541213 hasLocation W27895412134 @default.
- W2789541213 hasOpenAccess W2789541213 @default.