Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789622907> ?p ?o ?g. }
- W2789622907 endingPage "1213" @default.
- W2789622907 startingPage "1203" @default.
- W2789622907 abstract "• Intelligent driving methods (IDMs) are proposed to solve the multi-objective control problem of HST. • We integrate the expert knowledge system, sparse algorithm and ensemble CART algorithm to realize IDMs. • We propose dynamic allocated strategies of operation time to reduce the operation time error. • L0-norm minimization and ensemble CART algorithms can greatly enhance the generalization ability of proposed IDMs. • The proposed IDMs are better than traditional ATO controller and manual driving method. Currently, high-speed train (HST) is mainly controlled by manual driving and automatic train protection system, which may reduce the comfort of passengers and impair the intelligence of train operation. In recent years, some intelligent driving methods have been proposed for subway line. However, because of the continuous rise of HST’s operation speed and mileage, the driving data collected from HST is more than that of subway and the intelligent driving model will be complex if the source driving data is directly trained by data mining algorithms. So, the source driving data sets are classified into several classes in terms of the features of the driving data. In addition, iterative sparse L 0 -norm minimization is applied to sparsify the classified driving data and thus the redundant data will be deleted, which can speed up the computation speed of learning process. Furthermore, ensemble CART, including B-CART and A-CART are used to find the driving rules of both experienced drivers and ATO controller. Finally, the field data of Beijing-Shanghai high-speed railway and ATO simulation data are used to test the performance of the proposed intelligent driving methods. Compared with A-CART, the energy consumption, and the redundancy of the training data set of S-A-CART algorithm can be respectively decreased by 0.27% and 40% and the passengers’ riding comfort can be increased by 17.71%." @default.
- W2789622907 created "2018-03-29" @default.
- W2789622907 creator A5044098950 @default.
- W2789622907 creator A5061331291 @default.
- W2789622907 creator A5074289730 @default.
- W2789622907 creator A5086215557 @default.
- W2789622907 date "2019-01-01" @default.
- W2789622907 modified "2023-09-29" @default.
- W2789622907 title "Intelligent driving methods based on sparse LSSVM and ensemble CART algorithms for high-speed trains" @default.
- W2789622907 cites W1979916541 @default.
- W2789622907 cites W1988790447 @default.
- W2789622907 cites W1993186424 @default.
- W2789622907 cites W2002298318 @default.
- W2789622907 cites W2009975158 @default.
- W2789622907 cites W2028918699 @default.
- W2789622907 cites W2065474320 @default.
- W2789622907 cites W2077349158 @default.
- W2789622907 cites W2079286168 @default.
- W2789622907 cites W2081365200 @default.
- W2789622907 cites W2090786169 @default.
- W2789622907 cites W2096240357 @default.
- W2789622907 cites W2102151625 @default.
- W2789622907 cites W2109028470 @default.
- W2789622907 cites W2110771015 @default.
- W2789622907 cites W2124661182 @default.
- W2789622907 cites W2140196366 @default.
- W2789622907 cites W2154157033 @default.
- W2789622907 cites W2155257334 @default.
- W2789622907 cites W2173875532 @default.
- W2789622907 cites W2294449466 @default.
- W2789622907 cites W2414364427 @default.
- W2789622907 cites W2500222322 @default.
- W2789622907 cites W2572737592 @default.
- W2789622907 cites W2594339751 @default.
- W2789622907 cites W2624746261 @default.
- W2789622907 cites W2744963769 @default.
- W2789622907 cites W2766282873 @default.
- W2789622907 cites W2779022534 @default.
- W2789622907 cites W4212883601 @default.
- W2789622907 cites W747580527 @default.
- W2789622907 cites W978282248 @default.
- W2789622907 doi "https://doi.org/10.1016/j.cie.2018.03.022" @default.
- W2789622907 hasPublicationYear "2019" @default.
- W2789622907 type Work @default.
- W2789622907 sameAs 2789622907 @default.
- W2789622907 citedByCount "10" @default.
- W2789622907 countsByYear W27896229072019 @default.
- W2789622907 countsByYear W27896229072020 @default.
- W2789622907 countsByYear W27896229072021 @default.
- W2789622907 countsByYear W27896229072022 @default.
- W2789622907 crossrefType "journal-article" @default.
- W2789622907 hasAuthorship W2789622907A5044098950 @default.
- W2789622907 hasAuthorship W2789622907A5061331291 @default.
- W2789622907 hasAuthorship W2789622907A5074289730 @default.
- W2789622907 hasAuthorship W2789622907A5086215557 @default.
- W2789622907 hasConcept C11413529 @default.
- W2789622907 hasConcept C119857082 @default.
- W2789622907 hasConcept C124101348 @default.
- W2789622907 hasConcept C127413603 @default.
- W2789622907 hasConcept C147176958 @default.
- W2789622907 hasConcept C147764199 @default.
- W2789622907 hasConcept C154945302 @default.
- W2789622907 hasConcept C190839683 @default.
- W2789622907 hasConcept C199360897 @default.
- W2789622907 hasConcept C203479927 @default.
- W2789622907 hasConcept C205649164 @default.
- W2789622907 hasConcept C2777275308 @default.
- W2789622907 hasConcept C41008148 @default.
- W2789622907 hasConcept C47796450 @default.
- W2789622907 hasConcept C58640448 @default.
- W2789622907 hasConcept C6557445 @default.
- W2789622907 hasConcept C78519656 @default.
- W2789622907 hasConcept C86803240 @default.
- W2789622907 hasConceptScore W2789622907C11413529 @default.
- W2789622907 hasConceptScore W2789622907C119857082 @default.
- W2789622907 hasConceptScore W2789622907C124101348 @default.
- W2789622907 hasConceptScore W2789622907C127413603 @default.
- W2789622907 hasConceptScore W2789622907C147176958 @default.
- W2789622907 hasConceptScore W2789622907C147764199 @default.
- W2789622907 hasConceptScore W2789622907C154945302 @default.
- W2789622907 hasConceptScore W2789622907C190839683 @default.
- W2789622907 hasConceptScore W2789622907C199360897 @default.
- W2789622907 hasConceptScore W2789622907C203479927 @default.
- W2789622907 hasConceptScore W2789622907C205649164 @default.
- W2789622907 hasConceptScore W2789622907C2777275308 @default.
- W2789622907 hasConceptScore W2789622907C41008148 @default.
- W2789622907 hasConceptScore W2789622907C47796450 @default.
- W2789622907 hasConceptScore W2789622907C58640448 @default.
- W2789622907 hasConceptScore W2789622907C6557445 @default.
- W2789622907 hasConceptScore W2789622907C78519656 @default.
- W2789622907 hasConceptScore W2789622907C86803240 @default.
- W2789622907 hasFunder F4320321001 @default.
- W2789622907 hasLocation W27896229071 @default.
- W2789622907 hasOpenAccess W2789622907 @default.
- W2789622907 hasPrimaryLocation W27896229071 @default.
- W2789622907 hasRelatedWork W2038330314 @default.
- W2789622907 hasRelatedWork W2580078593 @default.
- W2789622907 hasRelatedWork W2889453578 @default.