Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789728745> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2789728745 abstract "Being able to accurately model the progression of Alzheimer’s disease (AD) is important for the diagnosis and prognosis of the disease, as well as to evaluate the effect of disease modifying treatments. Whilst there has been success in modeling the progression of AD related clinical biomarkers and image derived features over the course of the disease, modeling the expected progression as observed by magnetic resonance (MR) images directly remains a challenge. Here, we apply some recently developed ideas from the field of generative adversarial networks (GANs) which provide a powerful way to model and manipulate MR images directly though the technique of image arithmetic. This allows for synthetic images based upon an individual subject’s MR image to be produced expressing different levels of the features associated with AD. We demonstrate how the model can be used to both introduce and remove AD-like features from two regions in the brain, and show that these predicted changes correspond well to the observed changes over a longitudinal examination. We also propose a modification to the GAN training procedure to encourage the model to better represent the more extreme cases of AD present in the dataset. We show the benefit of this modification by comparing the ability of the resulting models to encode and reconstruct real images with high atrophy and other unusual features." @default.
- W2789728745 created "2018-03-29" @default.
- W2789728745 creator A5006461848 @default.
- W2789728745 creator A5026829432 @default.
- W2789728745 creator A5045287606 @default.
- W2789728745 creator A5065874626 @default.
- W2789728745 date "2018-03-02" @default.
- W2789728745 modified "2023-10-03" @default.
- W2789728745 title "Modelling the progression of Alzheimer's disease in MRI using generative adversarial networks" @default.
- W2789728745 cites W1594041518 @default.
- W2789728745 cites W1974874858 @default.
- W2789728745 cites W2003919893 @default.
- W2789728745 cites W2086978209 @default.
- W2789728745 cites W2093290779 @default.
- W2789728745 cites W2094843559 @default.
- W2789728745 cites W2098176256 @default.
- W2789728745 cites W2104048700 @default.
- W2789728745 cites W2117340355 @default.
- W2789728745 cites W212537071 @default.
- W2789728745 cites W2132458496 @default.
- W2789728745 cites W2154758450 @default.
- W2789728745 cites W2171051269 @default.
- W2789728745 cites W2599354622 @default.
- W2789728745 doi "https://doi.org/10.1117/12.2293256" @default.
- W2789728745 hasPublicationYear "2018" @default.
- W2789728745 type Work @default.
- W2789728745 sameAs 2789728745 @default.
- W2789728745 citedByCount "25" @default.
- W2789728745 countsByYear W27897287452019 @default.
- W2789728745 countsByYear W27897287452020 @default.
- W2789728745 countsByYear W27897287452021 @default.
- W2789728745 countsByYear W27897287452022 @default.
- W2789728745 countsByYear W27897287452023 @default.
- W2789728745 crossrefType "proceedings-article" @default.
- W2789728745 hasAuthorship W2789728745A5006461848 @default.
- W2789728745 hasAuthorship W2789728745A5026829432 @default.
- W2789728745 hasAuthorship W2789728745A5045287606 @default.
- W2789728745 hasAuthorship W2789728745A5065874626 @default.
- W2789728745 hasConcept C104317684 @default.
- W2789728745 hasConcept C115961682 @default.
- W2789728745 hasConcept C119857082 @default.
- W2789728745 hasConcept C126838900 @default.
- W2789728745 hasConcept C142724271 @default.
- W2789728745 hasConcept C143409427 @default.
- W2789728745 hasConcept C153180895 @default.
- W2789728745 hasConcept C154945302 @default.
- W2789728745 hasConcept C2779134260 @default.
- W2789728745 hasConcept C37736160 @default.
- W2789728745 hasConcept C39890363 @default.
- W2789728745 hasConcept C41008148 @default.
- W2789728745 hasConcept C55493867 @default.
- W2789728745 hasConcept C66746571 @default.
- W2789728745 hasConcept C71924100 @default.
- W2789728745 hasConcept C86803240 @default.
- W2789728745 hasConceptScore W2789728745C104317684 @default.
- W2789728745 hasConceptScore W2789728745C115961682 @default.
- W2789728745 hasConceptScore W2789728745C119857082 @default.
- W2789728745 hasConceptScore W2789728745C126838900 @default.
- W2789728745 hasConceptScore W2789728745C142724271 @default.
- W2789728745 hasConceptScore W2789728745C143409427 @default.
- W2789728745 hasConceptScore W2789728745C153180895 @default.
- W2789728745 hasConceptScore W2789728745C154945302 @default.
- W2789728745 hasConceptScore W2789728745C2779134260 @default.
- W2789728745 hasConceptScore W2789728745C37736160 @default.
- W2789728745 hasConceptScore W2789728745C39890363 @default.
- W2789728745 hasConceptScore W2789728745C41008148 @default.
- W2789728745 hasConceptScore W2789728745C55493867 @default.
- W2789728745 hasConceptScore W2789728745C66746571 @default.
- W2789728745 hasConceptScore W2789728745C71924100 @default.
- W2789728745 hasConceptScore W2789728745C86803240 @default.
- W2789728745 hasLocation W27897287451 @default.
- W2789728745 hasOpenAccess W2789728745 @default.
- W2789728745 hasPrimaryLocation W27897287451 @default.
- W2789728745 hasRelatedWork W2901368259 @default.
- W2789728745 hasRelatedWork W2973444776 @default.
- W2789728745 hasRelatedWork W3046843850 @default.
- W2789728745 hasRelatedWork W3156291593 @default.
- W2789728745 hasRelatedWork W3195755139 @default.
- W2789728745 hasRelatedWork W3198184493 @default.
- W2789728745 hasRelatedWork W4220812973 @default.
- W2789728745 hasRelatedWork W4283579220 @default.
- W2789728745 hasRelatedWork W4312525628 @default.
- W2789728745 hasRelatedWork W4386716251 @default.
- W2789728745 isParatext "false" @default.
- W2789728745 isRetracted "false" @default.
- W2789728745 magId "2789728745" @default.
- W2789728745 workType "article" @default.