Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789765289> ?p ?o ?g. }
- W2789765289 endingPage "235" @default.
- W2789765289 startingPage "223" @default.
- W2789765289 abstract "Improving the understanding of subsurface systems and thus reducing prediction uncertainty requires collection of data. As the collection of subsurface data is costly, it is important that the data collection scheme is cost-effective. Design of a cost-effective data collection scheme, i.e., data-worth analysis, requires quantifying model parameter, prediction, and both current and potential data uncertainties. Assessment of these uncertainties in large-scale stochastic subsurface hydrological model simulations using standard Monte Carlo (MC) sampling or surrogate modeling is extremely computationally intensive, sometimes even infeasible. In this work, we propose an efficient Bayesian data-worth analysis using a multilevel Monte Carlo (MLMC) method. Compared to the standard MC that requires a significantly large number of high-fidelity model executions to achieve a prescribed accuracy in estimating expectations, the MLMC can substantially reduce computational costs using multifidelity approximations. Since the Bayesian data-worth analysis involves a great deal of expectation estimation, the cost saving of the MLMC in the assessment can be outstanding. While the proposed MLMC-based data-worth analysis is broadly applicable, we use it for a highly heterogeneous two-phase subsurface flow simulation to select an optimal candidate data set that gives the largest uncertainty reduction in predicting mass flow rates at four production wells. The choices made by the MLMC estimation are validated by the actual measurements of the potential data, and consistent with the standard MC estimation. But compared to the standard MC, the MLMC greatly reduces the computational costs." @default.
- W2789765289 created "2018-03-29" @default.
- W2789765289 creator A5033805838 @default.
- W2789765289 creator A5055684887 @default.
- W2789765289 creator A5079659440 @default.
- W2789765289 date "2018-03-01" @default.
- W2789765289 modified "2023-10-18" @default.
- W2789765289 title "An efficient Bayesian data-worth analysis using a multilevel Monte Carlo method" @default.
- W2789765289 cites W1577899432 @default.
- W2789765289 cites W1634730157 @default.
- W2789765289 cites W1664824373 @default.
- W2789765289 cites W1788280023 @default.
- W2789765289 cites W1973765552 @default.
- W2789765289 cites W1983127338 @default.
- W2789765289 cites W1983139887 @default.
- W2789765289 cites W1990164024 @default.
- W2789765289 cites W2021255501 @default.
- W2789765289 cites W2028151690 @default.
- W2789765289 cites W2042553494 @default.
- W2789765289 cites W2052027263 @default.
- W2789765289 cites W2069326881 @default.
- W2789765289 cites W2070480272 @default.
- W2789765289 cites W2084501074 @default.
- W2789765289 cites W2098744186 @default.
- W2789765289 cites W2117122565 @default.
- W2789765289 cites W2120731138 @default.
- W2789765289 cites W2128602837 @default.
- W2789765289 cites W2133897616 @default.
- W2789765289 cites W2135459060 @default.
- W2789765289 cites W2161500084 @default.
- W2789765289 cites W2163715525 @default.
- W2789765289 cites W2294917378 @default.
- W2789765289 cites W2473979308 @default.
- W2789765289 cites W2497254580 @default.
- W2789765289 cites W2553111806 @default.
- W2789765289 cites W2762524006 @default.
- W2789765289 doi "https://doi.org/10.1016/j.advwatres.2018.01.024" @default.
- W2789765289 hasPublicationYear "2018" @default.
- W2789765289 type Work @default.
- W2789765289 sameAs 2789765289 @default.
- W2789765289 citedByCount "13" @default.
- W2789765289 countsByYear W27897652892019 @default.
- W2789765289 countsByYear W27897652892020 @default.
- W2789765289 countsByYear W27897652892021 @default.
- W2789765289 countsByYear W27897652892022 @default.
- W2789765289 countsByYear W27897652892023 @default.
- W2789765289 crossrefType "journal-article" @default.
- W2789765289 hasAuthorship W2789765289A5033805838 @default.
- W2789765289 hasAuthorship W2789765289A5055684887 @default.
- W2789765289 hasAuthorship W2789765289A5079659440 @default.
- W2789765289 hasBestOaLocation W27897652891 @default.
- W2789765289 hasConcept C105795698 @default.
- W2789765289 hasConcept C106131492 @default.
- W2789765289 hasConcept C107673813 @default.
- W2789765289 hasConcept C11413529 @default.
- W2789765289 hasConcept C119857082 @default.
- W2789765289 hasConcept C124101348 @default.
- W2789765289 hasConcept C126255220 @default.
- W2789765289 hasConcept C133462117 @default.
- W2789765289 hasConcept C140779682 @default.
- W2789765289 hasConcept C154945302 @default.
- W2789765289 hasConcept C177803969 @default.
- W2789765289 hasConcept C19499675 @default.
- W2789765289 hasConcept C31972630 @default.
- W2789765289 hasConcept C32230216 @default.
- W2789765289 hasConcept C33923547 @default.
- W2789765289 hasConcept C41008148 @default.
- W2789765289 hasConcept C44154836 @default.
- W2789765289 hasConcept C58489278 @default.
- W2789765289 hasConceptScore W2789765289C105795698 @default.
- W2789765289 hasConceptScore W2789765289C106131492 @default.
- W2789765289 hasConceptScore W2789765289C107673813 @default.
- W2789765289 hasConceptScore W2789765289C11413529 @default.
- W2789765289 hasConceptScore W2789765289C119857082 @default.
- W2789765289 hasConceptScore W2789765289C124101348 @default.
- W2789765289 hasConceptScore W2789765289C126255220 @default.
- W2789765289 hasConceptScore W2789765289C133462117 @default.
- W2789765289 hasConceptScore W2789765289C140779682 @default.
- W2789765289 hasConceptScore W2789765289C154945302 @default.
- W2789765289 hasConceptScore W2789765289C177803969 @default.
- W2789765289 hasConceptScore W2789765289C19499675 @default.
- W2789765289 hasConceptScore W2789765289C31972630 @default.
- W2789765289 hasConceptScore W2789765289C32230216 @default.
- W2789765289 hasConceptScore W2789765289C33923547 @default.
- W2789765289 hasConceptScore W2789765289C41008148 @default.
- W2789765289 hasConceptScore W2789765289C44154836 @default.
- W2789765289 hasConceptScore W2789765289C58489278 @default.
- W2789765289 hasLocation W27897652891 @default.
- W2789765289 hasLocation W27897652892 @default.
- W2789765289 hasOpenAccess W2789765289 @default.
- W2789765289 hasPrimaryLocation W27897652891 @default.
- W2789765289 hasRelatedWork W1907250805 @default.
- W2789765289 hasRelatedWork W1964079015 @default.
- W2789765289 hasRelatedWork W2154512159 @default.
- W2789765289 hasRelatedWork W2372067902 @default.
- W2789765289 hasRelatedWork W2672442488 @default.
- W2789765289 hasRelatedWork W3127213958 @default.
- W2789765289 hasRelatedWork W3138174063 @default.