Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789773203> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2789773203 abstract "Ensemble methods are powerful techniques used in machine learning to improve the prediction accuracy of classifier learning systems. In this study, different ensemble learning methods for lung cancer survival prediction were evaluated on the Surveillance, Epidemiology, and End Results (SEER) dataset. Data were preprocessed in several steps before applying classification models. Five popular ensemble methods, Bagging, Dagging, AdaBoost, MultiBoosting and Random SubSpace, and eight classification algorithms, RIPPER, Decision Stump, Simple Cart, C4.5, SMO, Logistic Regression, Bayes Net and Random Forest, as base classifiers were evaluated for lung cancer survival prediction. Then, risk of mortality after 5 years of diagnosis has been estimated. The prediction performance is measured in terms of accuracy and area under ROC curve (AUC). AdaBoost Algorithm had the best efficiency in increasing base classifiers performance in comparison to other four ensemble methods. It increased the accuracy of RIPPER from 88.88% to 88.98%, the accuracy of decision stump algorithm from 81.21% to 87.67% and the accuracy of SMO algorithm from 83.41% to 87.16%. AdaBoost algorithm also increased the AUC of RIPPER from 91.5% to 94.9%, the AUC of decision stump algorithm from 81.2% to 93.9%, the AUC of J48 algorithm from 94.1% to 94.9% and the AUC of SMO algorithm from 50.0% to 92.1%. Random subspace algorithm was the worst method in comparison to other ensemble techniques used in this study. The results empirically showed that ensemble methods are able to evaluate the performance of their base classifiers and they are appropriate methods for analysis of cancer survival." @default.
- W2789773203 created "2018-03-29" @default.
- W2789773203 creator A5023320109 @default.
- W2789773203 creator A5058428827 @default.
- W2789773203 date "2017-09-01" @default.
- W2789773203 modified "2023-09-23" @default.
- W2789773203 title "Predicting lung cancer survivability using ensemble learning methods" @default.
- W2789773203 cites W1514174278 @default.
- W2789773203 cites W1670263352 @default.
- W2789773203 cites W1980335931 @default.
- W2789773203 cites W1983024255 @default.
- W2789773203 cites W1990334654 @default.
- W2789773203 cites W2070534370 @default.
- W2789773203 cites W2080025280 @default.
- W2789773203 cites W2108949035 @default.
- W2789773203 cites W2113242816 @default.
- W2789773203 cites W2170413589 @default.
- W2789773203 cites W2262790950 @default.
- W2789773203 cites W2911964244 @default.
- W2789773203 cites W4212883601 @default.
- W2789773203 doi "https://doi.org/10.1109/intellisys.2017.8324368" @default.
- W2789773203 hasPublicationYear "2017" @default.
- W2789773203 type Work @default.
- W2789773203 sameAs 2789773203 @default.
- W2789773203 citedByCount "14" @default.
- W2789773203 countsByYear W27897732032019 @default.
- W2789773203 countsByYear W27897732032020 @default.
- W2789773203 countsByYear W27897732032022 @default.
- W2789773203 countsByYear W27897732032023 @default.
- W2789773203 crossrefType "proceedings-article" @default.
- W2789773203 hasAuthorship W2789773203A5023320109 @default.
- W2789773203 hasAuthorship W2789773203A5058428827 @default.
- W2789773203 hasConcept C106135958 @default.
- W2789773203 hasConcept C110083411 @default.
- W2789773203 hasConcept C11413529 @default.
- W2789773203 hasConcept C119857082 @default.
- W2789773203 hasConcept C12267149 @default.
- W2789773203 hasConcept C141404830 @default.
- W2789773203 hasConcept C153180895 @default.
- W2789773203 hasConcept C154945302 @default.
- W2789773203 hasConcept C169258074 @default.
- W2789773203 hasConcept C32834561 @default.
- W2789773203 hasConcept C41008148 @default.
- W2789773203 hasConcept C45942800 @default.
- W2789773203 hasConcept C52001869 @default.
- W2789773203 hasConcept C52003472 @default.
- W2789773203 hasConcept C58471807 @default.
- W2789773203 hasConcept C84525736 @default.
- W2789773203 hasConceptScore W2789773203C106135958 @default.
- W2789773203 hasConceptScore W2789773203C110083411 @default.
- W2789773203 hasConceptScore W2789773203C11413529 @default.
- W2789773203 hasConceptScore W2789773203C119857082 @default.
- W2789773203 hasConceptScore W2789773203C12267149 @default.
- W2789773203 hasConceptScore W2789773203C141404830 @default.
- W2789773203 hasConceptScore W2789773203C153180895 @default.
- W2789773203 hasConceptScore W2789773203C154945302 @default.
- W2789773203 hasConceptScore W2789773203C169258074 @default.
- W2789773203 hasConceptScore W2789773203C32834561 @default.
- W2789773203 hasConceptScore W2789773203C41008148 @default.
- W2789773203 hasConceptScore W2789773203C45942800 @default.
- W2789773203 hasConceptScore W2789773203C52001869 @default.
- W2789773203 hasConceptScore W2789773203C52003472 @default.
- W2789773203 hasConceptScore W2789773203C58471807 @default.
- W2789773203 hasConceptScore W2789773203C84525736 @default.
- W2789773203 hasLocation W27897732031 @default.
- W2789773203 hasOpenAccess W2789773203 @default.
- W2789773203 hasPrimaryLocation W27897732031 @default.
- W2789773203 hasRelatedWork W2588755677 @default.
- W2789773203 hasRelatedWork W2904660175 @default.
- W2789773203 hasRelatedWork W2936214295 @default.
- W2789773203 hasRelatedWork W3170784702 @default.
- W2789773203 hasRelatedWork W3188003272 @default.
- W2789773203 hasRelatedWork W3204641204 @default.
- W2789773203 hasRelatedWork W4283016678 @default.
- W2789773203 hasRelatedWork W4293069612 @default.
- W2789773203 hasRelatedWork W4316087365 @default.
- W2789773203 hasRelatedWork W4375930479 @default.
- W2789773203 isParatext "false" @default.
- W2789773203 isRetracted "false" @default.
- W2789773203 magId "2789773203" @default.
- W2789773203 workType "article" @default.