Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789807757> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2789807757 endingPage "32" @default.
- W2789807757 startingPage "15" @default.
- W2789807757 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=application/x-tex>f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a holomorphic and locally univalent function on the unit disk <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper D> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>D</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Subscript r> <mml:semantics> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>C_r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the circle centered at the origin of radius <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=r> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=application/x-tex>r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=0 greater-than r greater-than 1> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>r</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>0>r >1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We will prove that the total absolute curvature of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f left-parenthesis upper C Subscript r Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>f(C_r)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an increasing function of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=r> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=application/x-tex>r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Moreover, we present inequalities involving the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper L Superscript p> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>L</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>mathrm {L}^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm of the curvature of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f left-parenthesis upper C Subscript r Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>f(C_r)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Using the hyperbolic geometry of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper D> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>D</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we will prove an analogous monotonicity result for the hyperbolic total curvature. In the case where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=application/x-tex>f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a hyperbolically convex mapping of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper D> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>D</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into itself, we compare the hyperbolic total curvature of the curves <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Subscript r> <mml:semantics> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>C_r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f left-parenthesis upper C Subscript r Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>f(C_r)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and show that their ratio is a decreasing function. The last result can also be seen as a geometric version of the classical Schwarz Lemma." @default.
- W2789807757 created "2018-03-29" @default.
- W2789807757 creator A5084859238 @default.
- W2789807757 date "2018-03-05" @default.
- W2789807757 modified "2023-09-27" @default.
- W2789807757 title "Conformal mapping, convexity and total absolute curvature" @default.
- W2789807757 cites W1447735438 @default.
- W2789807757 cites W1484178435 @default.
- W2789807757 cites W1501601053 @default.
- W2789807757 cites W1965621061 @default.
- W2789807757 cites W1971020662 @default.
- W2789807757 cites W2016531358 @default.
- W2789807757 cites W2029612838 @default.
- W2789807757 cites W2041086896 @default.
- W2789807757 cites W2045889075 @default.
- W2789807757 cites W2068018896 @default.
- W2789807757 cites W2075221615 @default.
- W2789807757 cites W2083363946 @default.
- W2789807757 cites W2090531056 @default.
- W2789807757 cites W2506112121 @default.
- W2789807757 cites W2591774213 @default.
- W2789807757 cites W4237356637 @default.
- W2789807757 cites W4245749254 @default.
- W2789807757 cites W4248198502 @default.
- W2789807757 doi "https://doi.org/10.1090/ecgd/317" @default.
- W2789807757 hasPublicationYear "2018" @default.
- W2789807757 type Work @default.
- W2789807757 sameAs 2789807757 @default.
- W2789807757 citedByCount "3" @default.
- W2789807757 countsByYear W27898077572018 @default.
- W2789807757 countsByYear W27898077572019 @default.
- W2789807757 countsByYear W27898077572022 @default.
- W2789807757 crossrefType "journal-article" @default.
- W2789807757 hasAuthorship W2789807757A5084859238 @default.
- W2789807757 hasBestOaLocation W27898077571 @default.
- W2789807757 hasConcept C11413529 @default.
- W2789807757 hasConcept C127313418 @default.
- W2789807757 hasConcept C151730666 @default.
- W2789807757 hasConcept C154945302 @default.
- W2789807757 hasConcept C2776321320 @default.
- W2789807757 hasConcept C2777299769 @default.
- W2789807757 hasConcept C41008148 @default.
- W2789807757 hasConceptScore W2789807757C11413529 @default.
- W2789807757 hasConceptScore W2789807757C127313418 @default.
- W2789807757 hasConceptScore W2789807757C151730666 @default.
- W2789807757 hasConceptScore W2789807757C154945302 @default.
- W2789807757 hasConceptScore W2789807757C2776321320 @default.
- W2789807757 hasConceptScore W2789807757C2777299769 @default.
- W2789807757 hasConceptScore W2789807757C41008148 @default.
- W2789807757 hasIssue "2" @default.
- W2789807757 hasLocation W27898077571 @default.
- W2789807757 hasOpenAccess W2789807757 @default.
- W2789807757 hasPrimaryLocation W27898077571 @default.
- W2789807757 hasRelatedWork W1490908374 @default.
- W2789807757 hasRelatedWork W151193258 @default.
- W2789807757 hasRelatedWork W1529400504 @default.
- W2789807757 hasRelatedWork W1607472309 @default.
- W2789807757 hasRelatedWork W1871911958 @default.
- W2789807757 hasRelatedWork W1892467659 @default.
- W2789807757 hasRelatedWork W2348710178 @default.
- W2789807757 hasRelatedWork W2401909756 @default.
- W2789807757 hasRelatedWork W2808586768 @default.
- W2789807757 hasRelatedWork W2998403542 @default.
- W2789807757 hasVolume "22" @default.
- W2789807757 isParatext "false" @default.
- W2789807757 isRetracted "false" @default.
- W2789807757 magId "2789807757" @default.
- W2789807757 workType "article" @default.