Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789868210> ?p ?o ?g. }
- W2789868210 endingPage "134" @default.
- W2789868210 startingPage "105" @default.
- W2789868210 abstract "This chapter addresses one of the fundamental problems involved in multimedia systems, namely efficient similarity search for large collections of multimedia content. This problem has received a lot of attention from various research communities. In particular, it is a historical line of research in computational geometry and databases. The computer vision and multimedia communities have adopted pragmatic approaches guided by practical requirements: the large sets of features required to describe image collections make visual search a highly demanding task. As a result, early works [Flickner et al. 1995, Fagin 1998, Beis and Lowe 1997] in image indexing have foreseen the interest in approximate algorithms, especially after the dissemination of methods based on local description in the 90s, as any improvement obtained on this indexing part improves the whole visual search system.Among the existing approximate nearest neighbors (ANN) strategies, the popular framework of Locality-Sensitive Hashing (LSH) [Indyk and Motwani 1998, Gionis et al. 1999] provides theoretical guarantees on the search quality with limited assumptions on the underlying data distribution. It was first proposed [Indyk and Motwani 1998] for the Hamming and l1 spaces, and was later extended to the Euclidean/ cosine cases [Charikar 2002, Datar et al. 2004] or the earth mover's distance [Charikar 2002, Andoni and Indyk 2006]. LSH has been successfully used for local descriptors [Ke et al. 2004], 3D object indexing [Matei et al. 2006, Shakhnarovich et al. 2006], and other fields such as audio retrieval [Casey and Slaney 2007, Ryynanen and Klapuri 2008]. It has also received some attention in a context of private information retrieval [Pathak and Raj 2012, Aghasaryan et al. 2013, Furon et al. 2013].A few years ago, approaches inspired by compression and more specifically quantization-based approaches [Jǵou et al. 2011] were shown to be a viable alternative to hashing methods, and shown successful for efficiently searching in a billion-sized dataset.This chapter discusses these different trends. It is organized as follows. Section 5.1 gives some background references and concepts, including evaluation issues. Most of the methods and variants are exposed within the LSH framework. It is worth mentioning that LSH is more of a concept than a particular algorithm. The search algorithms associated with LSH follow two distinct search mechanisms, the probe-cell model and sketches, which are discussed in Sections 5.2 and 5.3, respectively. Section 5.4 describes methods inspired by compression algorithms, while Section 5.5 discusses hybrid approaches combining the non-exhaustiveness of the cell-probe model with the advantages of sketches or compression-based algorithms. Other metrics than Euclidean and cosine are briefly discussed in Section 5.6." @default.
- W2789868210 created "2018-03-29" @default.
- W2789868210 creator A5033867133 @default.
- W2789868210 date "2017-12-19" @default.
- W2789868210 modified "2023-10-14" @default.
- W2789868210 title "Efficient similarity search" @default.
- W2789868210 cites W1488338708 @default.
- W2789868210 cites W1515722984 @default.
- W2789868210 cites W1536680647 @default.
- W2789868210 cites W1539015357 @default.
- W2789868210 cites W1539419769 @default.
- W2789868210 cites W1544327602 @default.
- W2789868210 cites W1564064225 @default.
- W2789868210 cites W1565909544 @default.
- W2789868210 cites W1566135517 @default.
- W2789868210 cites W1571434535 @default.
- W2789868210 cites W1588783802 @default.
- W2789868210 cites W1602000446 @default.
- W2789868210 cites W1602571205 @default.
- W2789868210 cites W179458199 @default.
- W2789868210 cites W1800519929 @default.
- W2789868210 cites W1844628735 @default.
- W2789868210 cites W1873027057 @default.
- W2789868210 cites W1896754995 @default.
- W2789868210 cites W1911745671 @default.
- W2789868210 cites W1966385142 @default.
- W2789868210 cites W1966797434 @default.
- W2789868210 cites W1966955614 @default.
- W2789868210 cites W1969092626 @default.
- W2789868210 cites W1969320149 @default.
- W2789868210 cites W1970364187 @default.
- W2789868210 cites W1970497840 @default.
- W2789868210 cites W1971098529 @default.
- W2789868210 cites W1973168503 @default.
- W2789868210 cites W1973285633 @default.
- W2789868210 cites W1975712849 @default.
- W2789868210 cites W1976318178 @default.
- W2789868210 cites W1977182282 @default.
- W2789868210 cites W1978872857 @default.
- W2789868210 cites W1979045671 @default.
- W2789868210 cites W1980028917 @default.
- W2789868210 cites W1980061733 @default.
- W2789868210 cites W1982300822 @default.
- W2789868210 cites W1982743464 @default.
- W2789868210 cites W1983362722 @default.
- W2789868210 cites W1983705368 @default.
- W2789868210 cites W1985158079 @default.
- W2789868210 cites W1986315484 @default.
- W2789868210 cites W1988511239 @default.
- W2789868210 cites W1989160572 @default.
- W2789868210 cites W1990334093 @default.
- W2789868210 cites W1991815126 @default.
- W2789868210 cites W1993022201 @default.
- W2789868210 cites W1994226161 @default.
- W2789868210 cites W1994788755 @default.
- W2789868210 cites W1995341919 @default.
- W2789868210 cites W1995412549 @default.
- W2789868210 cites W1995840496 @default.
- W2789868210 cites W1998654670 @default.
- W2789868210 cites W1999153225 @default.
- W2789868210 cites W1999735946 @default.
- W2789868210 cites W1999977943 @default.
- W2789868210 cites W2000911789 @default.
- W2789868210 cites W2001014535 @default.
- W2789868210 cites W2001722583 @default.
- W2789868210 cites W2001968606 @default.
- W2789868210 cites W2002055708 @default.
- W2789868210 cites W2002257715 @default.
- W2789868210 cites W2005126631 @default.
- W2789868210 cites W2006593672 @default.
- W2789868210 cites W2007178811 @default.
- W2789868210 cites W2007839873 @default.
- W2789868210 cites W2008415856 @default.
- W2789868210 cites W2010123130 @default.
- W2789868210 cites W2010399676 @default.
- W2789868210 cites W2010463179 @default.
- W2789868210 cites W2012833704 @default.
- W2789868210 cites W2015143272 @default.
- W2789868210 cites W2016891207 @default.
- W2789868210 cites W2017481266 @default.
- W2789868210 cites W2019348278 @default.
- W2789868210 cites W2020194695 @default.
- W2789868210 cites W2020672972 @default.
- W2789868210 cites W2022566595 @default.
- W2789868210 cites W2024668293 @default.
- W2789868210 cites W2024930473 @default.
- W2789868210 cites W2025051251 @default.
- W2789868210 cites W2027392238 @default.
- W2789868210 cites W2027423568 @default.
- W2789868210 cites W2027884847 @default.
- W2789868210 cites W2029495080 @default.
- W2789868210 cites W2030139727 @default.
- W2789868210 cites W2035607533 @default.
- W2789868210 cites W2036593095 @default.
- W2789868210 cites W2037176849 @default.
- W2789868210 cites W2037227137 @default.
- W2789868210 cites W2037482400 @default.
- W2789868210 cites W2038569950 @default.