Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789871570> ?p ?o ?g. }
- W2789871570 endingPage "215" @default.
- W2789871570 startingPage "205" @default.
- W2789871570 abstract "In the age of big data, companies tend to deploy their services in data centers rather than their own servers. The demands of big data analytics grow significantly, which leads to an extremely high electricity consumption at data centers. In this paper, we investigate the cost minimization problem of big data analytics on geo-distributed data centers connected to renewable energy sources with unpredictable capacity. To solve this problem, we propose a Reinforcement Learning (RL) based job scheduling algorithm by combining RL with neural network (NN). Moreover, two techniques are developed to enhance the performance of our proposal. Specifically, Random Pool Sampling (RPS) is proposed to retrain the NN via accumulated training data, and a novel Unidirectional Bridge Network (UBN) structure is designed for further enhancing the training speed by using the historical knowledge stored in the trained NN. Experiment results on real Google cluster traces and electricity price from Energy Information Administration show that our approach is able to reduce the data centers' cost significantly compared with other benchmark algorithms." @default.
- W2789871570 created "2018-03-29" @default.
- W2789871570 creator A5027249863 @default.
- W2789871570 creator A5030691366 @default.
- W2789871570 creator A5035534911 @default.
- W2789871570 creator A5039318240 @default.
- W2789871570 creator A5043464306 @default.
- W2789871570 creator A5071458554 @default.
- W2789871570 date "2020-01-01" @default.
- W2789871570 modified "2023-09-28" @default.
- W2789871570 title "Renewable Energy-Aware Big Data Analytics in Geo-Distributed Data Centers with Reinforcement Learning" @default.
- W2789871570 cites W1981078384 @default.
- W2789871570 cites W1985871083 @default.
- W2789871570 cites W1986800449 @default.
- W2789871570 cites W1988032138 @default.
- W2789871570 cites W1996600352 @default.
- W2789871570 cites W2004482359 @default.
- W2789871570 cites W2034527750 @default.
- W2789871570 cites W2039708501 @default.
- W2789871570 cites W2046376809 @default.
- W2789871570 cites W2073865102 @default.
- W2789871570 cites W2085560226 @default.
- W2789871570 cites W2086948995 @default.
- W2789871570 cites W2087108946 @default.
- W2789871570 cites W2087379809 @default.
- W2789871570 cites W2097271361 @default.
- W2789871570 cites W2102910133 @default.
- W2789871570 cites W2118955868 @default.
- W2789871570 cites W2145339207 @default.
- W2789871570 cites W2154997814 @default.
- W2789871570 cites W2170560434 @default.
- W2789871570 cites W2314164187 @default.
- W2789871570 cites W2411584702 @default.
- W2789871570 cites W2529891837 @default.
- W2789871570 cites W2530389446 @default.
- W2789871570 cites W2534140487 @default.
- W2789871570 cites W2554001956 @default.
- W2789871570 cites W2556111255 @default.
- W2789871570 cites W2562141967 @default.
- W2789871570 cites W2568019971 @default.
- W2789871570 cites W2606906085 @default.
- W2789871570 cites W2608689243 @default.
- W2789871570 cites W2729222988 @default.
- W2789871570 cites W2783354355 @default.
- W2789871570 cites W2785883864 @default.
- W2789871570 cites W2789896367 @default.
- W2789871570 cites W2885869305 @default.
- W2789871570 cites W4361805402 @default.
- W2789871570 cites W2489526136 @default.
- W2789871570 doi "https://doi.org/10.1109/tnse.2018.2813333" @default.
- W2789871570 hasPublicationYear "2020" @default.
- W2789871570 type Work @default.
- W2789871570 sameAs 2789871570 @default.
- W2789871570 citedByCount "64" @default.
- W2789871570 countsByYear W27898715702018 @default.
- W2789871570 countsByYear W27898715702019 @default.
- W2789871570 countsByYear W27898715702020 @default.
- W2789871570 countsByYear W27898715702021 @default.
- W2789871570 countsByYear W27898715702022 @default.
- W2789871570 countsByYear W27898715702023 @default.
- W2789871570 crossrefType "journal-article" @default.
- W2789871570 hasAuthorship W2789871570A5027249863 @default.
- W2789871570 hasAuthorship W2789871570A5030691366 @default.
- W2789871570 hasAuthorship W2789871570A5035534911 @default.
- W2789871570 hasAuthorship W2789871570A5039318240 @default.
- W2789871570 hasAuthorship W2789871570A5043464306 @default.
- W2789871570 hasAuthorship W2789871570A5071458554 @default.
- W2789871570 hasConcept C119599485 @default.
- W2789871570 hasConcept C120314980 @default.
- W2789871570 hasConcept C124101348 @default.
- W2789871570 hasConcept C127413603 @default.
- W2789871570 hasConcept C13280743 @default.
- W2789871570 hasConcept C153740404 @default.
- W2789871570 hasConcept C154945302 @default.
- W2789871570 hasConcept C175801342 @default.
- W2789871570 hasConcept C185798385 @default.
- W2789871570 hasConcept C188573790 @default.
- W2789871570 hasConcept C205649164 @default.
- W2789871570 hasConcept C206658404 @default.
- W2789871570 hasConcept C206729178 @default.
- W2789871570 hasConcept C21547014 @default.
- W2789871570 hasConcept C2780165032 @default.
- W2789871570 hasConcept C31258907 @default.
- W2789871570 hasConcept C41008148 @default.
- W2789871570 hasConcept C50644808 @default.
- W2789871570 hasConcept C75684735 @default.
- W2789871570 hasConcept C79158427 @default.
- W2789871570 hasConcept C79403827 @default.
- W2789871570 hasConcept C93996380 @default.
- W2789871570 hasConcept C97541855 @default.
- W2789871570 hasConceptScore W2789871570C119599485 @default.
- W2789871570 hasConceptScore W2789871570C120314980 @default.
- W2789871570 hasConceptScore W2789871570C124101348 @default.
- W2789871570 hasConceptScore W2789871570C127413603 @default.
- W2789871570 hasConceptScore W2789871570C13280743 @default.
- W2789871570 hasConceptScore W2789871570C153740404 @default.
- W2789871570 hasConceptScore W2789871570C154945302 @default.
- W2789871570 hasConceptScore W2789871570C175801342 @default.