Matches in SemOpenAlex for { <https://semopenalex.org/work/W2789872019> ?p ?o ?g. }
- W2789872019 endingPage "881" @default.
- W2789872019 startingPage "871" @default.
- W2789872019 abstract "Rationale Explorative statistical analysis of mass spectrometry data is still a time-consuming step. We analyzed critical factors for application of principal component analysis (PCA) in mass spectrometry and focused on two whole spectrum based normalization techniques and their application in the analysis of registered peak data and, in comparison, in full spectrum data analysis. We used this technique to identify different metabolic patterns in the bacterial culture of Cronobacter sakazakii, an important foodborne pathogen. Methods Two software utilities, the ms-alone, a python-based utility for mass spectrometry data preprocessing and peak extraction, and the multiMS-toolbox, an R software tool for advanced peak registration and detailed explorative statistical analysis, were implemented. The bacterial culture of Cronobacter sakazakii was cultivated on Enterobacter sakazakii Isolation Agar, Blood Agar Base and Tryptone Soya Agar for 24 h and 48 h and applied by the smear method on an Autoflex speed MALDI-TOF mass spectrometer. Results For three tested cultivation media only two different metabolic patterns of Cronobacter sakazakii were identified using PCA applied on data normalized by two different normalization techniques. Results from matched peak data and subsequent detailed full spectrum analysis identified only two different metabolic patterns – a cultivation on Enterobacter sakazakii Isolation Agar showed significant differences to the cultivation on the other two tested media. The metabolic patterns for all tested cultivation media also proved the dependence on cultivation time. Conclusions Both whole spectrum based normalization techniques together with the full spectrum PCA allow identification of important discriminative factors in experiments with several variable condition factors avoiding any problems with improper identification of peaks or emphasis on bellow threshold peak data. The amounts of processed data remain still manageable. Both implemented software utilities are available free of charge from http://uprt.vscht.cz/ms." @default.
- W2789872019 created "2018-03-29" @default.
- W2789872019 creator A5022215516 @default.
- W2789872019 creator A5025168474 @default.
- W2789872019 creator A5035735677 @default.
- W2789872019 creator A5043837835 @default.
- W2789872019 creator A5063266581 @default.
- W2789872019 date "2018-05-07" @default.
- W2789872019 modified "2023-10-17" @default.
- W2789872019 title "Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: An effective tool to identify important factors for classification of different metabolic patterns and bacterial strains" @default.
- W2789872019 cites W1529446927 @default.
- W2789872019 cites W1608430727 @default.
- W2789872019 cites W1777175209 @default.
- W2789872019 cites W1907327044 @default.
- W2789872019 cites W1964010911 @default.
- W2789872019 cites W1965366579 @default.
- W2789872019 cites W1977601452 @default.
- W2789872019 cites W1977775666 @default.
- W2789872019 cites W1989299822 @default.
- W2789872019 cites W2005573696 @default.
- W2789872019 cites W2006481826 @default.
- W2789872019 cites W2016274413 @default.
- W2789872019 cites W2036740013 @default.
- W2789872019 cites W2040131209 @default.
- W2789872019 cites W2044722977 @default.
- W2789872019 cites W2061637917 @default.
- W2789872019 cites W2080046774 @default.
- W2789872019 cites W2085903081 @default.
- W2789872019 cites W2087070363 @default.
- W2789872019 cites W2105599925 @default.
- W2789872019 cites W2118764792 @default.
- W2789872019 cites W2144054945 @default.
- W2789872019 cites W2146078492 @default.
- W2789872019 cites W2147214095 @default.
- W2789872019 cites W2152396098 @default.
- W2789872019 cites W2153947402 @default.
- W2789872019 cites W2154467959 @default.
- W2789872019 cites W2157575327 @default.
- W2789872019 cites W2159469574 @default.
- W2789872019 cites W2168130065 @default.
- W2789872019 cites W2169682953 @default.
- W2789872019 cites W2180040377 @default.
- W2789872019 cites W2256578114 @default.
- W2789872019 cites W2294798173 @default.
- W2789872019 cites W2295124130 @default.
- W2789872019 cites W2418625273 @default.
- W2789872019 cites W2551391751 @default.
- W2789872019 cites W2607997119 @default.
- W2789872019 cites W2609657979 @default.
- W2789872019 cites W2613609053 @default.
- W2789872019 cites W2796488440 @default.
- W2789872019 cites W300106714 @default.
- W2789872019 cites W2551419849 @default.
- W2789872019 doi "https://doi.org/10.1002/rcm.8110" @default.
- W2789872019 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29520858" @default.
- W2789872019 hasPublicationYear "2018" @default.
- W2789872019 type Work @default.
- W2789872019 sameAs 2789872019 @default.
- W2789872019 citedByCount "18" @default.
- W2789872019 countsByYear W27898720192018 @default.
- W2789872019 countsByYear W27898720192019 @default.
- W2789872019 countsByYear W27898720192020 @default.
- W2789872019 countsByYear W27898720192021 @default.
- W2789872019 countsByYear W27898720192022 @default.
- W2789872019 countsByYear W27898720192023 @default.
- W2789872019 crossrefType "journal-article" @default.
- W2789872019 hasAuthorship W2789872019A5022215516 @default.
- W2789872019 hasAuthorship W2789872019A5025168474 @default.
- W2789872019 hasAuthorship W2789872019A5035735677 @default.
- W2789872019 hasAuthorship W2789872019A5043837835 @default.
- W2789872019 hasAuthorship W2789872019A5063266581 @default.
- W2789872019 hasConcept C104317684 @default.
- W2789872019 hasConcept C136886441 @default.
- W2789872019 hasConcept C144024400 @default.
- W2789872019 hasConcept C154945302 @default.
- W2789872019 hasConcept C162356407 @default.
- W2789872019 hasConcept C185592680 @default.
- W2789872019 hasConcept C19165224 @default.
- W2789872019 hasConcept C27438332 @default.
- W2789872019 hasConcept C2778660310 @default.
- W2789872019 hasConcept C2778983983 @default.
- W2789872019 hasConcept C41008148 @default.
- W2789872019 hasConcept C43617362 @default.
- W2789872019 hasConcept C523546767 @default.
- W2789872019 hasConcept C54355233 @default.
- W2789872019 hasConcept C547475151 @default.
- W2789872019 hasConcept C55493867 @default.
- W2789872019 hasConcept C70721500 @default.
- W2789872019 hasConcept C86803240 @default.
- W2789872019 hasConceptScore W2789872019C104317684 @default.
- W2789872019 hasConceptScore W2789872019C136886441 @default.
- W2789872019 hasConceptScore W2789872019C144024400 @default.
- W2789872019 hasConceptScore W2789872019C154945302 @default.
- W2789872019 hasConceptScore W2789872019C162356407 @default.
- W2789872019 hasConceptScore W2789872019C185592680 @default.
- W2789872019 hasConceptScore W2789872019C19165224 @default.
- W2789872019 hasConceptScore W2789872019C27438332 @default.
- W2789872019 hasConceptScore W2789872019C2778660310 @default.