Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790034089> ?p ?o ?g. }
- W2790034089 endingPage "94" @default.
- W2790034089 startingPage "84" @default.
- W2790034089 abstract "The use of fluorescence data coupled with neural networks for improved predictability of drinking water disinfection by-products (DBPs) was investigated. Novel application of autoencoders to process high-dimensional fluorescence data was related to common dimensionality reduction techniques of parallel factors analysis (PARAFAC) and principal component analysis (PCA). The proposed method was assessed based on component interpretability as well as for prediction of organic matter reactivity to formation of DBPs. Optimal prediction accuracies on a validation dataset were observed with an autoencoder-neural network approach or by utilizing the full spectrum without pre-processing. Latent representation by an autoencoder appeared to mitigate overfitting when compared to other methods. Although DBP prediction error was minimized by other pre-processing techniques, PARAFAC yielded interpretable components which resemble fluorescence expected from individual organic fluorophores. Through analysis of the network weights, fluorescence regions associated with DBP formation can be identified, representing a potential method to distinguish reactivity between fluorophore groupings. However, distinct results due to the applied dimensionality reduction approaches were observed, dictating a need for considering the role of data pre-processing in the interpretability of the results. In comparison to common organic measures currently used for DBP formation prediction, fluorescence was shown to improve prediction accuracies, with improvements to DBP prediction best realized when appropriate pre-processing and regression techniques were applied. The results of this study show promise for the potential application of neural networks to best utilize fluorescence EEM data for prediction of organic matter reactivity." @default.
- W2790034089 created "2018-03-29" @default.
- W2790034089 creator A5026926340 @default.
- W2790034089 creator A5044146535 @default.
- W2790034089 creator A5087145148 @default.
- W2790034089 date "2018-06-01" @default.
- W2790034089 modified "2023-10-03" @default.
- W2790034089 title "Neural networks for dimensionality reduction of fluorescence spectra and prediction of drinking water disinfection by-products" @default.
- W2790034089 cites W1183246415 @default.
- W2790034089 cites W1926401635 @default.
- W2790034089 cites W1966273736 @default.
- W2790034089 cites W1979279771 @default.
- W2790034089 cites W1979325168 @default.
- W2790034089 cites W1988643803 @default.
- W2790034089 cites W1989328542 @default.
- W2790034089 cites W1996399430 @default.
- W2790034089 cites W1999127605 @default.
- W2790034089 cites W1999760584 @default.
- W2790034089 cites W2001845050 @default.
- W2790034089 cites W2030819361 @default.
- W2790034089 cites W2034436368 @default.
- W2790034089 cites W2035245606 @default.
- W2790034089 cites W2037806803 @default.
- W2790034089 cites W2038645306 @default.
- W2790034089 cites W2070842165 @default.
- W2790034089 cites W2072170472 @default.
- W2790034089 cites W2076107924 @default.
- W2790034089 cites W2086974664 @default.
- W2790034089 cites W2100495367 @default.
- W2790034089 cites W2106100979 @default.
- W2790034089 cites W2116782162 @default.
- W2790034089 cites W2127351878 @default.
- W2790034089 cites W2140006621 @default.
- W2790034089 cites W2157382843 @default.
- W2790034089 cites W2164832304 @default.
- W2790034089 cites W2169053895 @default.
- W2790034089 cites W2224995543 @default.
- W2790034089 cites W2252676691 @default.
- W2790034089 cites W2411129950 @default.
- W2790034089 cites W2566744277 @default.
- W2790034089 doi "https://doi.org/10.1016/j.watres.2018.02.052" @default.
- W2790034089 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29500975" @default.
- W2790034089 hasPublicationYear "2018" @default.
- W2790034089 type Work @default.
- W2790034089 sameAs 2790034089 @default.
- W2790034089 citedByCount "63" @default.
- W2790034089 countsByYear W27900340892018 @default.
- W2790034089 countsByYear W27900340892019 @default.
- W2790034089 countsByYear W27900340892020 @default.
- W2790034089 countsByYear W27900340892021 @default.
- W2790034089 countsByYear W27900340892022 @default.
- W2790034089 countsByYear W27900340892023 @default.
- W2790034089 crossrefType "journal-article" @default.
- W2790034089 hasAuthorship W2790034089A5026926340 @default.
- W2790034089 hasAuthorship W2790034089A5044146535 @default.
- W2790034089 hasAuthorship W2790034089A5087145148 @default.
- W2790034089 hasBestOaLocation W27900340892 @default.
- W2790034089 hasConcept C101738243 @default.
- W2790034089 hasConcept C111030470 @default.
- W2790034089 hasConcept C119857082 @default.
- W2790034089 hasConcept C153180895 @default.
- W2790034089 hasConcept C154945302 @default.
- W2790034089 hasConcept C17744445 @default.
- W2790034089 hasConcept C185592680 @default.
- W2790034089 hasConcept C186060115 @default.
- W2790034089 hasConcept C199539241 @default.
- W2790034089 hasConcept C22019652 @default.
- W2790034089 hasConcept C27438332 @default.
- W2790034089 hasConcept C2776359362 @default.
- W2790034089 hasConcept C2781067378 @default.
- W2790034089 hasConcept C41008148 @default.
- W2790034089 hasConcept C50644808 @default.
- W2790034089 hasConcept C70518039 @default.
- W2790034089 hasConcept C86803240 @default.
- W2790034089 hasConcept C94625758 @default.
- W2790034089 hasConceptScore W2790034089C101738243 @default.
- W2790034089 hasConceptScore W2790034089C111030470 @default.
- W2790034089 hasConceptScore W2790034089C119857082 @default.
- W2790034089 hasConceptScore W2790034089C153180895 @default.
- W2790034089 hasConceptScore W2790034089C154945302 @default.
- W2790034089 hasConceptScore W2790034089C17744445 @default.
- W2790034089 hasConceptScore W2790034089C185592680 @default.
- W2790034089 hasConceptScore W2790034089C186060115 @default.
- W2790034089 hasConceptScore W2790034089C199539241 @default.
- W2790034089 hasConceptScore W2790034089C22019652 @default.
- W2790034089 hasConceptScore W2790034089C27438332 @default.
- W2790034089 hasConceptScore W2790034089C2776359362 @default.
- W2790034089 hasConceptScore W2790034089C2781067378 @default.
- W2790034089 hasConceptScore W2790034089C41008148 @default.
- W2790034089 hasConceptScore W2790034089C50644808 @default.
- W2790034089 hasConceptScore W2790034089C70518039 @default.
- W2790034089 hasConceptScore W2790034089C86803240 @default.
- W2790034089 hasConceptScore W2790034089C94625758 @default.
- W2790034089 hasFunder F4320321490 @default.
- W2790034089 hasFunder F4320322015 @default.
- W2790034089 hasFunder F4320334593 @default.
- W2790034089 hasLocation W27900340891 @default.
- W2790034089 hasLocation W27900340892 @default.