Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790094050> ?p ?o ?g. }
- W2790094050 endingPage "251" @default.
- W2790094050 startingPage "235" @default.
- W2790094050 abstract "Combining statistical techniques to predict postsurgical risk of 1-year mortality for patients with colon cancer Inmaculada Arostegui,1–3 Nerea Gonzalez,2,4 Nerea Fernández-de-Larrea,5,6 Santiago Lázaro-Aramburu,7 Marisa Baré,2,8 Maximino Redondo,2,9 Cristina Sarasqueta,2,10 Susana Garcia-Gutierrez,2,4 José M Quintana2,4 On behalf of the REDISSEC CARESS-CCR Group2 1Department of Applied Mathematics, Statistics and Operations Research, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; 2Health Services Research on Chronic Patients Network (REDISSEC), Galdakao, Bizkaia, Spain; 3Basque Center for Applied Mathematics – BCAM, Bilbao, Bizkaia, Spain; 4Research Unit, Galdakao-Usansolo Hospital, Galdakao, Bizkaia, Spain; 5Environmental and Cancer Epidemiology Unit, National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; 6Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; 7General Surgery Service, Galdakao-Usansolo Hospital, Galdakao, Bizkaia, Spain; 8Clinical Epidemiology and Cancer Screening Unit, Parc Taulí Sabadell-Hospital Universitari, UAB, Sabadell, Barcelona, Spain; 9Research Unit, Costa del Sol Hospital, Marbella, Malaga, Spain; 10Research Unit, Donostia Hospital, Donostia-San Sebastián, Gipuzkoa, Spain Introduction: Colorectal cancer is one of the most frequently diagnosed malignancies and a common cause of cancer-related mortality. The aim of this study was to develop and validate a clinical predictive model for 1-year mortality among patients with colon cancer who survive for at least 30 days after surgery. Methods: Patients diagnosed with colon cancer who had surgery for the first time and who survived 30 days after the surgery were selected prospectively. The outcome was mortality within 1 year. Random forest, genetic algorithms and classification and regression trees were combined in order to identify the variables and partition points that optimally classify patients by risk of mortality. The resulting decision tree was categorized into four risk categories. Split-sample and bootstrap validation were performed. ClinicalTrials.gov Identifier: NCT02488161. Results: A total of 1945 patients were enrolled in the study. The variables identified as the main predictors of 1-year mortality were presence of residual tumor, American Society of Anesthesiologists Physical Status Classification System risk score, pathologic tumor staging, Charlson Comorbidity Index, intraoperative complications, adjuvant chemotherapy and recurrence of tumor. The model was internally validated; area under the receiver operating characteristic curve (AUC) was 0.896 in the derivation sample and 0.835 in the validation sample. Risk categorization leads to AUC values of 0.875 and 0.832 in the derivation and validation samples, respectively. Optimal cut-off point of estimated risk had a sensitivity of 0.889 and a specificity of 0.758. Conclusion: The decision tree was a simple, interpretable, valid and accurate prediction rule of 1-year mortality among colon cancer patients who survived for at least 30 days after surgery. Keywords: clinical prediction rules, colonic neoplasms, colorectal surgery, tree-based methods, prediction model, 1-year-mortality" @default.
- W2790094050 created "2018-03-29" @default.
- W2790094050 creator A5001264694 @default.
- W2790094050 creator A5006666503 @default.
- W2790094050 creator A5016666598 @default.
- W2790094050 creator A5023201462 @default.
- W2790094050 creator A5036574944 @default.
- W2790094050 creator A5048126469 @default.
- W2790094050 creator A5054229228 @default.
- W2790094050 creator A5054868492 @default.
- W2790094050 creator A5085434188 @default.
- W2790094050 date "2018-03-01" @default.
- W2790094050 modified "2023-10-14" @default.
- W2790094050 title "Combining statistical techniques to predict postsurgical risk of 1-year mortality for patients with colon cancer" @default.
- W2790094050 cites W1532635242 @default.
- W2790094050 cites W1593273041 @default.
- W2790094050 cites W1602160603 @default.
- W2790094050 cites W1672050380 @default.
- W2790094050 cites W1867629940 @default.
- W2790094050 cites W1963703602 @default.
- W2790094050 cites W1981064792 @default.
- W2790094050 cites W1994682257 @default.
- W2790094050 cites W1995199924 @default.
- W2790094050 cites W2000445173 @default.
- W2790094050 cites W2006617902 @default.
- W2790094050 cites W2013416277 @default.
- W2790094050 cites W2019663969 @default.
- W2790094050 cites W2023207073 @default.
- W2790094050 cites W2023611112 @default.
- W2790094050 cites W2028552358 @default.
- W2790094050 cites W2043564561 @default.
- W2790094050 cites W2046021994 @default.
- W2790094050 cites W2048359072 @default.
- W2790094050 cites W2049462700 @default.
- W2790094050 cites W2055875549 @default.
- W2790094050 cites W2072212271 @default.
- W2790094050 cites W2073141423 @default.
- W2790094050 cites W2075943857 @default.
- W2790094050 cites W2080767065 @default.
- W2790094050 cites W2081202263 @default.
- W2790094050 cites W2089300758 @default.
- W2790094050 cites W2089752440 @default.
- W2790094050 cites W2091297498 @default.
- W2790094050 cites W2097741492 @default.
- W2790094050 cites W2101076259 @default.
- W2790094050 cites W2102614609 @default.
- W2790094050 cites W2130373985 @default.
- W2790094050 cites W2138982156 @default.
- W2790094050 cites W2143761925 @default.
- W2790094050 cites W2146857332 @default.
- W2790094050 cites W2155982020 @default.
- W2790094050 cites W2156818887 @default.
- W2790094050 cites W2163719914 @default.
- W2790094050 cites W2166128425 @default.
- W2790094050 cites W2236701099 @default.
- W2790094050 cites W2289470045 @default.
- W2790094050 cites W2321113102 @default.
- W2790094050 cites W2328868030 @default.
- W2790094050 cites W2411879949 @default.
- W2790094050 cites W2472179922 @default.
- W2790094050 cites W2571536841 @default.
- W2790094050 cites W1943538354 @default.
- W2790094050 doi "https://doi.org/10.2147/clep.s146729" @default.
- W2790094050 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5846756" @default.
- W2790094050 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29563837" @default.
- W2790094050 hasPublicationYear "2018" @default.
- W2790094050 type Work @default.
- W2790094050 sameAs 2790094050 @default.
- W2790094050 citedByCount "9" @default.
- W2790094050 countsByYear W27900940502019 @default.
- W2790094050 countsByYear W27900940502020 @default.
- W2790094050 countsByYear W27900940502021 @default.
- W2790094050 countsByYear W27900940502022 @default.
- W2790094050 countsByYear W27900940502023 @default.
- W2790094050 crossrefType "journal-article" @default.
- W2790094050 hasAuthorship W2790094050A5001264694 @default.
- W2790094050 hasAuthorship W2790094050A5006666503 @default.
- W2790094050 hasAuthorship W2790094050A5016666598 @default.
- W2790094050 hasAuthorship W2790094050A5023201462 @default.
- W2790094050 hasAuthorship W2790094050A5036574944 @default.
- W2790094050 hasAuthorship W2790094050A5048126469 @default.
- W2790094050 hasAuthorship W2790094050A5054229228 @default.
- W2790094050 hasAuthorship W2790094050A5054868492 @default.
- W2790094050 hasAuthorship W2790094050A5085434188 @default.
- W2790094050 hasBestOaLocation W27900940501 @default.
- W2790094050 hasConcept C107130276 @default.
- W2790094050 hasConcept C121608353 @default.
- W2790094050 hasConcept C126322002 @default.
- W2790094050 hasConcept C138816342 @default.
- W2790094050 hasConcept C142724271 @default.
- W2790094050 hasConcept C526805850 @default.
- W2790094050 hasConcept C71924100 @default.
- W2790094050 hasConceptScore W2790094050C107130276 @default.
- W2790094050 hasConceptScore W2790094050C121608353 @default.
- W2790094050 hasConceptScore W2790094050C126322002 @default.
- W2790094050 hasConceptScore W2790094050C138816342 @default.
- W2790094050 hasConceptScore W2790094050C142724271 @default.
- W2790094050 hasConceptScore W2790094050C526805850 @default.