Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790195878> ?p ?o ?g. }
- W2790195878 endingPage "50" @default.
- W2790195878 startingPage "42" @default.
- W2790195878 abstract "Detecting in prior bearing faults is an essential task of machine health monitoring because bearings are the vital components of rotary machines. The performance of traditional intelligent fault diagnosis methods depend on feature extraction of fault signals, which requires signal processing techniques, expert knowledge, and human labor. Recently, deep learning algorithms have been applied widely in machine health monitoring. With the capacity of automatically learning complex features of input data, deep learning architectures have great potential to overcome drawbacks of traditional intelligent fault diagnosis. This paper proposes a method for diagnosing bearing faults based on a deep structure of convolutional neural network. Using vibration signals directly as input data, the proposed method is an automatic fault diagnosis system which does not require any feature extraction techniques and achieves very high accuracy and robustness under noisy environments." @default.
- W2790195878 created "2018-03-29" @default.
- W2790195878 creator A5080167383 @default.
- W2790195878 creator A5083716981 @default.
- W2790195878 date "2019-01-01" @default.
- W2790195878 modified "2023-10-09" @default.
- W2790195878 title "Rolling element bearing fault diagnosis using convolutional neural network and vibration image" @default.
- W2790195878 cites W1411285485 @default.
- W2790195878 cites W179875071 @default.
- W2790195878 cites W1974225813 @default.
- W2790195878 cites W1985716425 @default.
- W2790195878 cites W1991723619 @default.
- W2790195878 cites W1993646015 @default.
- W2790195878 cites W2002616799 @default.
- W2790195878 cites W2013885787 @default.
- W2790195878 cites W2019647347 @default.
- W2790195878 cites W2040070030 @default.
- W2790195878 cites W2058983449 @default.
- W2790195878 cites W2063922127 @default.
- W2790195878 cites W2068432667 @default.
- W2790195878 cites W2071785476 @default.
- W2790195878 cites W2087327261 @default.
- W2790195878 cites W2092721384 @default.
- W2790195878 cites W2096220984 @default.
- W2790195878 cites W2097117768 @default.
- W2790195878 cites W2113327167 @default.
- W2790195878 cites W2115954437 @default.
- W2790195878 cites W2123649031 @default.
- W2790195878 cites W2141188346 @default.
- W2790195878 cites W2150248355 @default.
- W2790195878 cites W2195459533 @default.
- W2790195878 cites W2219903032 @default.
- W2790195878 cites W2225448695 @default.
- W2790195878 cites W2342591535 @default.
- W2790195878 cites W2345010043 @default.
- W2790195878 cites W2488793338 @default.
- W2790195878 cites W2513528654 @default.
- W2790195878 cites W2521877993 @default.
- W2790195878 cites W2534684863 @default.
- W2790195878 cites W2595657631 @default.
- W2790195878 cites W2595796352 @default.
- W2790195878 cites W2737404945 @default.
- W2790195878 cites W4232920930 @default.
- W2790195878 doi "https://doi.org/10.1016/j.cogsys.2018.03.002" @default.
- W2790195878 hasPublicationYear "2019" @default.
- W2790195878 type Work @default.
- W2790195878 sameAs 2790195878 @default.
- W2790195878 citedByCount "265" @default.
- W2790195878 countsByYear W27901958782018 @default.
- W2790195878 countsByYear W27901958782019 @default.
- W2790195878 countsByYear W27901958782020 @default.
- W2790195878 countsByYear W27901958782021 @default.
- W2790195878 countsByYear W27901958782022 @default.
- W2790195878 countsByYear W27901958782023 @default.
- W2790195878 crossrefType "journal-article" @default.
- W2790195878 hasAuthorship W2790195878A5080167383 @default.
- W2790195878 hasAuthorship W2790195878A5083716981 @default.
- W2790195878 hasConcept C104317684 @default.
- W2790195878 hasConcept C108583219 @default.
- W2790195878 hasConcept C119857082 @default.
- W2790195878 hasConcept C121332964 @default.
- W2790195878 hasConcept C127313418 @default.
- W2790195878 hasConcept C153180895 @default.
- W2790195878 hasConcept C154945302 @default.
- W2790195878 hasConcept C165205528 @default.
- W2790195878 hasConcept C175551986 @default.
- W2790195878 hasConcept C185592680 @default.
- W2790195878 hasConcept C198394728 @default.
- W2790195878 hasConcept C199978012 @default.
- W2790195878 hasConcept C2780155820 @default.
- W2790195878 hasConcept C41008148 @default.
- W2790195878 hasConcept C50644808 @default.
- W2790195878 hasConcept C52622490 @default.
- W2790195878 hasConcept C55493867 @default.
- W2790195878 hasConcept C62520636 @default.
- W2790195878 hasConcept C63479239 @default.
- W2790195878 hasConcept C81363708 @default.
- W2790195878 hasConceptScore W2790195878C104317684 @default.
- W2790195878 hasConceptScore W2790195878C108583219 @default.
- W2790195878 hasConceptScore W2790195878C119857082 @default.
- W2790195878 hasConceptScore W2790195878C121332964 @default.
- W2790195878 hasConceptScore W2790195878C127313418 @default.
- W2790195878 hasConceptScore W2790195878C153180895 @default.
- W2790195878 hasConceptScore W2790195878C154945302 @default.
- W2790195878 hasConceptScore W2790195878C165205528 @default.
- W2790195878 hasConceptScore W2790195878C175551986 @default.
- W2790195878 hasConceptScore W2790195878C185592680 @default.
- W2790195878 hasConceptScore W2790195878C198394728 @default.
- W2790195878 hasConceptScore W2790195878C199978012 @default.
- W2790195878 hasConceptScore W2790195878C2780155820 @default.
- W2790195878 hasConceptScore W2790195878C41008148 @default.
- W2790195878 hasConceptScore W2790195878C50644808 @default.
- W2790195878 hasConceptScore W2790195878C52622490 @default.
- W2790195878 hasConceptScore W2790195878C55493867 @default.
- W2790195878 hasConceptScore W2790195878C62520636 @default.
- W2790195878 hasConceptScore W2790195878C63479239 @default.
- W2790195878 hasConceptScore W2790195878C81363708 @default.
- W2790195878 hasFunder F4320321408 @default.