Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790201703> ?p ?o ?g. }
- W2790201703 endingPage "1834" @default.
- W2790201703 startingPage "1826" @default.
- W2790201703 abstract "Multifeature learning has been a fundamental research problem in multimedia analysis. Most existing multifeature learning methods exploit graph, which must be computed beforehand, as input to uncover data distribution. These methods have two major problems confronted. First, graph construction requires calculating similarity based on nearby data pairs by a fixed function, e.g., the RBF kernel, but the intrinsic correlation among different data pairs varies constantly. Therefore, feature learning based on such predefined graphs may degrade, especially when there is dramatic correlation variation between nearby data pairs. Second, in most existing algorithms, each single-feature graph is computed independently and then combine them for learning, which ignores the correlation between multiple features. In this paper, a new unsupervised multifeature learning method is proposed to make the best utilization of the correlation among different features by jointly optimizing data correlation from multiple features in an adaptive way. As opposed to computing the affinity weight of data pairs by a fixed function, the weight of affinity graph is learned by a well-designed optimization problem. Additionally, the affinity graph of data pairs from different features is optimized in a global level to better leverage the correlation among different channels. In this way, the adaptive approach correlates the features of all features for a better learning process. Experimental results on real-world datasets demonstrate that our approach outperforms the state-of-the-art algorithms on leveraging multiple features for multimedia analysis." @default.
- W2790201703 created "2018-03-29" @default.
- W2790201703 creator A5005421447 @default.
- W2790201703 creator A5027063174 @default.
- W2790201703 creator A5034967388 @default.
- W2790201703 creator A5037870770 @default.
- W2790201703 creator A5058413200 @default.
- W2790201703 creator A5069988750 @default.
- W2790201703 date "2019-05-01" @default.
- W2790201703 modified "2023-10-18" @default.
- W2790201703 title "Adaptive Structure Discovery for Multimedia Analysis Using Multiple Features." @default.
- W2790201703 cites W1907775068 @default.
- W2790201703 cites W1965963232 @default.
- W2790201703 cites W1969014310 @default.
- W2790201703 cites W1975172027 @default.
- W2790201703 cites W1979089718 @default.
- W2790201703 cites W2001070410 @default.
- W2790201703 cites W2008989859 @default.
- W2790201703 cites W2020220077 @default.
- W2790201703 cites W2048679005 @default.
- W2790201703 cites W2054271410 @default.
- W2790201703 cites W2108502868 @default.
- W2790201703 cites W2117553576 @default.
- W2790201703 cites W2118382442 @default.
- W2790201703 cites W2139395976 @default.
- W2790201703 cites W2142109962 @default.
- W2790201703 cites W2142674578 @default.
- W2790201703 cites W2150860957 @default.
- W2790201703 cites W2166049352 @default.
- W2790201703 cites W2197707282 @default.
- W2790201703 cites W2217359989 @default.
- W2790201703 cites W2246035736 @default.
- W2790201703 cites W2508497007 @default.
- W2790201703 cites W2520861906 @default.
- W2790201703 cites W2593539611 @default.
- W2790201703 cites W2752190933 @default.
- W2790201703 cites W2756626360 @default.
- W2790201703 cites W2783299469 @default.
- W2790201703 cites W3148981562 @default.
- W2790201703 cites W4250589301 @default.
- W2790201703 doi "https://doi.org/10.1109/tcyb.2018.2815012" @default.
- W2790201703 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29993799" @default.
- W2790201703 hasPublicationYear "2019" @default.
- W2790201703 type Work @default.
- W2790201703 sameAs 2790201703 @default.
- W2790201703 citedByCount "37" @default.
- W2790201703 countsByYear W27902017032019 @default.
- W2790201703 countsByYear W27902017032020 @default.
- W2790201703 countsByYear W27902017032021 @default.
- W2790201703 countsByYear W27902017032022 @default.
- W2790201703 countsByYear W27902017032023 @default.
- W2790201703 crossrefType "journal-article" @default.
- W2790201703 hasAuthorship W2790201703A5005421447 @default.
- W2790201703 hasAuthorship W2790201703A5027063174 @default.
- W2790201703 hasAuthorship W2790201703A5034967388 @default.
- W2790201703 hasAuthorship W2790201703A5037870770 @default.
- W2790201703 hasAuthorship W2790201703A5058413200 @default.
- W2790201703 hasAuthorship W2790201703A5069988750 @default.
- W2790201703 hasConcept C100595998 @default.
- W2790201703 hasConcept C117220453 @default.
- W2790201703 hasConcept C119857082 @default.
- W2790201703 hasConcept C122280245 @default.
- W2790201703 hasConcept C12267149 @default.
- W2790201703 hasConcept C124101348 @default.
- W2790201703 hasConcept C132525143 @default.
- W2790201703 hasConcept C138885662 @default.
- W2790201703 hasConcept C153083717 @default.
- W2790201703 hasConcept C153180895 @default.
- W2790201703 hasConcept C154945302 @default.
- W2790201703 hasConcept C160446489 @default.
- W2790201703 hasConcept C165696696 @default.
- W2790201703 hasConcept C2524010 @default.
- W2790201703 hasConcept C2776401178 @default.
- W2790201703 hasConcept C33923547 @default.
- W2790201703 hasConcept C38652104 @default.
- W2790201703 hasConcept C41008148 @default.
- W2790201703 hasConcept C41895202 @default.
- W2790201703 hasConcept C59404180 @default.
- W2790201703 hasConcept C80444323 @default.
- W2790201703 hasConceptScore W2790201703C100595998 @default.
- W2790201703 hasConceptScore W2790201703C117220453 @default.
- W2790201703 hasConceptScore W2790201703C119857082 @default.
- W2790201703 hasConceptScore W2790201703C122280245 @default.
- W2790201703 hasConceptScore W2790201703C12267149 @default.
- W2790201703 hasConceptScore W2790201703C124101348 @default.
- W2790201703 hasConceptScore W2790201703C132525143 @default.
- W2790201703 hasConceptScore W2790201703C138885662 @default.
- W2790201703 hasConceptScore W2790201703C153083717 @default.
- W2790201703 hasConceptScore W2790201703C153180895 @default.
- W2790201703 hasConceptScore W2790201703C154945302 @default.
- W2790201703 hasConceptScore W2790201703C160446489 @default.
- W2790201703 hasConceptScore W2790201703C165696696 @default.
- W2790201703 hasConceptScore W2790201703C2524010 @default.
- W2790201703 hasConceptScore W2790201703C2776401178 @default.
- W2790201703 hasConceptScore W2790201703C33923547 @default.
- W2790201703 hasConceptScore W2790201703C38652104 @default.
- W2790201703 hasConceptScore W2790201703C41008148 @default.
- W2790201703 hasConceptScore W2790201703C41895202 @default.