Matches in SemOpenAlex for { <https://semopenalex.org/work/W279021566> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W279021566 abstract "Abstract : Over the past two decades, machine learning has led to substantial changes in Data Fusion Systems globally. One of the most important application areas for data fusion is situation awareness to support command and control. Situation awareness is perception of elements in the environment, comprehension of the current situation, and projection of future status before decision making. Traditional fusion systems focus on lower levels of the JDL hierarchy, leaving higher-level fusion and situation awareness largely to unaided human judgment. This becomes untenable in today's increasingly data-rich environments, characterized by information and cognitive overload. Higher-level fusion to support situation awareness requires semantically rich representations amenable to automated processing. Ontologies are an essential tool for representing domain semantics and expressing information about entities and relationships in the domain. Probabilistic ontologies augment standard ontologies with support for uncertainty management, which is essential for higher-level fusion to support situation awareness. PROGNOS is a prototype Predictive Situation Awareness (PSAW) System for the maritime domain. The core logic for the PROGNOS probabilistic ontologies is Multi-Entity Bayesian Networks (MEBN), which combine First-Order Logic with Bayesian Networks for representing and reasoning about uncertainty in complex, knowledge-rich domains. MEBN goes beyond standard Bayesian networks to enable reasoning about an unknown number of entities interacting with each other in various types of relationships, a key requirement for PSAW. The existing probabilistic ontology for PROGNOS was constructed manually by a domain expert. However, manual MEBN modeling is labor-intensive and not agile. We have developed a learning algorithm for MEBN-based probabilistic ontologies. This paper presents a bridge between MEBN and the Relational Model, and a parameter and structure learning algorithm for MEBN." @default.
- W279021566 created "2016-06-24" @default.
- W279021566 creator A5027444148 @default.
- W279021566 date "2017-01-01" @default.
- W279021566 modified "2023-09-27" @default.
- W279021566 title "Multi-Entity Bayesian Networks Learning for Predictive Situation Awareness" @default.
- W279021566 cites W107058043 @default.
- W279021566 cites W1515751655 @default.
- W279021566 cites W1520106371 @default.
- W279021566 cites W1544152542 @default.
- W279021566 cites W1554045846 @default.
- W279021566 cites W1570321471 @default.
- W279021566 cites W1639819558 @default.
- W279021566 cites W1992202517 @default.
- W279021566 cites W2053181911 @default.
- W279021566 cites W2065606385 @default.
- W279021566 cites W2139412680 @default.
- W279021566 cites W2157391134 @default.
- W279021566 cites W2159080219 @default.
- W279021566 cites W2162966567 @default.
- W279021566 cites W22685585 @default.
- W279021566 cites W2484797342 @default.
- W279021566 cites W2982838333 @default.
- W279021566 cites W2988119170 @default.
- W279021566 cites W7642643 @default.
- W279021566 hasPublicationYear "2017" @default.
- W279021566 type Work @default.
- W279021566 sameAs 279021566 @default.
- W279021566 citedByCount "5" @default.
- W279021566 countsByYear W2790215662013 @default.
- W279021566 countsByYear W2790215662015 @default.
- W279021566 countsByYear W2790215662016 @default.
- W279021566 crossrefType "dissertation" @default.
- W279021566 hasAuthorship W279021566A5027444148 @default.
- W279021566 hasConcept C111472728 @default.
- W279021566 hasConcept C119857082 @default.
- W279021566 hasConcept C127413603 @default.
- W279021566 hasConcept C134306372 @default.
- W279021566 hasConcept C138885662 @default.
- W279021566 hasConcept C145804949 @default.
- W279021566 hasConcept C146978453 @default.
- W279021566 hasConcept C154945302 @default.
- W279021566 hasConcept C207685749 @default.
- W279021566 hasConcept C2522767166 @default.
- W279021566 hasConcept C25810664 @default.
- W279021566 hasConcept C33724603 @default.
- W279021566 hasConcept C33923547 @default.
- W279021566 hasConcept C36503486 @default.
- W279021566 hasConcept C41008148 @default.
- W279021566 hasConcept C49937458 @default.
- W279021566 hasConcept C56739046 @default.
- W279021566 hasConceptScore W279021566C111472728 @default.
- W279021566 hasConceptScore W279021566C119857082 @default.
- W279021566 hasConceptScore W279021566C127413603 @default.
- W279021566 hasConceptScore W279021566C134306372 @default.
- W279021566 hasConceptScore W279021566C138885662 @default.
- W279021566 hasConceptScore W279021566C145804949 @default.
- W279021566 hasConceptScore W279021566C146978453 @default.
- W279021566 hasConceptScore W279021566C154945302 @default.
- W279021566 hasConceptScore W279021566C207685749 @default.
- W279021566 hasConceptScore W279021566C2522767166 @default.
- W279021566 hasConceptScore W279021566C25810664 @default.
- W279021566 hasConceptScore W279021566C33724603 @default.
- W279021566 hasConceptScore W279021566C33923547 @default.
- W279021566 hasConceptScore W279021566C36503486 @default.
- W279021566 hasConceptScore W279021566C41008148 @default.
- W279021566 hasConceptScore W279021566C49937458 @default.
- W279021566 hasConceptScore W279021566C56739046 @default.
- W279021566 hasLocation W2790215661 @default.
- W279021566 hasOpenAccess W279021566 @default.
- W279021566 hasPrimaryLocation W2790215661 @default.
- W279021566 hasRelatedWork W127654613 @default.
- W279021566 hasRelatedWork W1495204715 @default.
- W279021566 hasRelatedWork W1557609050 @default.
- W279021566 hasRelatedWork W1557874724 @default.
- W279021566 hasRelatedWork W1974583688 @default.
- W279021566 hasRelatedWork W2031995255 @default.
- W279021566 hasRelatedWork W2033602221 @default.
- W279021566 hasRelatedWork W2053181911 @default.
- W279021566 hasRelatedWork W2077156380 @default.
- W279021566 hasRelatedWork W2134024236 @default.
- W279021566 hasRelatedWork W2159080219 @default.
- W279021566 hasRelatedWork W2353093817 @default.
- W279021566 hasRelatedWork W2746609717 @default.
- W279021566 hasRelatedWork W2941756021 @default.
- W279021566 hasRelatedWork W2965854637 @default.
- W279021566 hasRelatedWork W3086434061 @default.
- W279021566 hasRelatedWork W326027020 @default.
- W279021566 hasRelatedWork W42368435 @default.
- W279021566 hasRelatedWork W7642643 @default.
- W279021566 hasRelatedWork W2100883540 @default.
- W279021566 isParatext "false" @default.
- W279021566 isRetracted "false" @default.
- W279021566 magId "279021566" @default.
- W279021566 workType "dissertation" @default.