Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790216347> ?p ?o ?g. }
- W2790216347 endingPage "433" @default.
- W2790216347 startingPage "425" @default.
- W2790216347 abstract "OBJECTIVE An estimated 293,300 healthcare-associated cases of Clostridium difficile infection (CDI) occur annually in the United States. To date, research has focused on developing risk prediction models for CDI that work well across institutions. However, this one-size-fits-all approach ignores important hospital-specific factors. We focus on a generalizable method for building facility-specific models. We demonstrate the applicability of the approach using electronic health records (EHR) from the University of Michigan Hospitals (UM) and the Massachusetts General Hospital (MGH). METHODS We utilized EHR data from 191,014 adult admissions to UM and 65,718 adult admissions to MGH. We extracted patient demographics, admission details, patient history, and daily hospitalization details, resulting in 4,836 features from patients at UM and 1,837 from patients at MGH. We used L2 regularized logistic regression to learn the models, and we measured the discriminative performance of the models on held-out data from each hospital. RESULTS Using the UM and MGH test data, the models achieved area under the receiver operating characteristic curve (AUROC) values of 0.82 (95% confidence interval [CI], 0.80-0.84) and 0.75 ( 95% CI, 0.73-0.78), respectively. Some predictive factors were shared between the 2 models, but many of the top predictive factors differed between facilities. CONCLUSION A data-driven approach to building models for estimating daily patient risk for CDI was used to build institution-specific models at 2 large hospitals with different patient populations and EHR systems. In contrast to traditional approaches that focus on developing models that apply across hospitals, our generalizable approach yields risk-stratification models tailored to an institution. These hospital-specific models allow for earlier and more accurate identification of high-risk patients and better targeting of infection prevention strategies. Infect Control Hosp Epidemiol 2018;39:425-433." @default.
- W2790216347 created "2018-03-29" @default.
- W2790216347 creator A5006216892 @default.
- W2790216347 creator A5009164449 @default.
- W2790216347 creator A5013723626 @default.
- W2790216347 creator A5020155151 @default.
- W2790216347 creator A5021859030 @default.
- W2790216347 creator A5023335385 @default.
- W2790216347 creator A5032938040 @default.
- W2790216347 creator A5039406963 @default.
- W2790216347 creator A5049294221 @default.
- W2790216347 creator A5055037967 @default.
- W2790216347 creator A5055608910 @default.
- W2790216347 creator A5079946001 @default.
- W2790216347 creator A5091840892 @default.
- W2790216347 date "2018-03-26" @default.
- W2790216347 modified "2023-10-15" @default.
- W2790216347 title "A Generalizable, Data-Driven Approach to Predict Daily Risk of<i>Clostridium difficile</i>Infection at Two Large Academic Health Centers" @default.
- W2790216347 cites W1902913528 @default.
- W2790216347 cites W1944397307 @default.
- W2790216347 cites W1979257511 @default.
- W2790216347 cites W2007162750 @default.
- W2790216347 cites W2049155780 @default.
- W2790216347 cites W2071054182 @default.
- W2790216347 cites W2090779061 @default.
- W2790216347 cites W2130111166 @default.
- W2790216347 cites W2132755184 @default.
- W2790216347 cites W2134665827 @default.
- W2790216347 cites W2136485013 @default.
- W2790216347 cites W2136501333 @default.
- W2790216347 cites W2146996430 @default.
- W2790216347 cites W2166660180 @default.
- W2790216347 cites W2288732852 @default.
- W2790216347 cites W2318035590 @default.
- W2790216347 cites W2342170534 @default.
- W2790216347 cites W2342761922 @default.
- W2790216347 cites W2343435145 @default.
- W2790216347 cites W2343663262 @default.
- W2790216347 cites W2429234884 @default.
- W2790216347 cites W2536640334 @default.
- W2790216347 cites W2557738935 @default.
- W2790216347 cites W2567760185 @default.
- W2790216347 cites W2586526765 @default.
- W2790216347 cites W2601565692 @default.
- W2790216347 cites W2603257905 @default.
- W2790216347 cites W2769103991 @default.
- W2790216347 doi "https://doi.org/10.1017/ice.2018.16" @default.
- W2790216347 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6421072" @default.
- W2790216347 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29576042" @default.
- W2790216347 hasPublicationYear "2018" @default.
- W2790216347 type Work @default.
- W2790216347 sameAs 2790216347 @default.
- W2790216347 citedByCount "99" @default.
- W2790216347 countsByYear W27902163472018 @default.
- W2790216347 countsByYear W27902163472019 @default.
- W2790216347 countsByYear W27902163472020 @default.
- W2790216347 countsByYear W27902163472021 @default.
- W2790216347 countsByYear W27902163472022 @default.
- W2790216347 countsByYear W27902163472023 @default.
- W2790216347 crossrefType "journal-article" @default.
- W2790216347 hasAuthorship W2790216347A5006216892 @default.
- W2790216347 hasAuthorship W2790216347A5009164449 @default.
- W2790216347 hasAuthorship W2790216347A5013723626 @default.
- W2790216347 hasAuthorship W2790216347A5020155151 @default.
- W2790216347 hasAuthorship W2790216347A5021859030 @default.
- W2790216347 hasAuthorship W2790216347A5023335385 @default.
- W2790216347 hasAuthorship W2790216347A5032938040 @default.
- W2790216347 hasAuthorship W2790216347A5039406963 @default.
- W2790216347 hasAuthorship W2790216347A5049294221 @default.
- W2790216347 hasAuthorship W2790216347A5055037967 @default.
- W2790216347 hasAuthorship W2790216347A5055608910 @default.
- W2790216347 hasAuthorship W2790216347A5079946001 @default.
- W2790216347 hasAuthorship W2790216347A5091840892 @default.
- W2790216347 hasBestOaLocation W27902163471 @default.
- W2790216347 hasConcept C119857082 @default.
- W2790216347 hasConcept C126322002 @default.
- W2790216347 hasConcept C144024400 @default.
- W2790216347 hasConcept C149923435 @default.
- W2790216347 hasConcept C151956035 @default.
- W2790216347 hasConcept C160735492 @default.
- W2790216347 hasConcept C162324750 @default.
- W2790216347 hasConcept C194828623 @default.
- W2790216347 hasConcept C2780084366 @default.
- W2790216347 hasConcept C2994496256 @default.
- W2790216347 hasConcept C41008148 @default.
- W2790216347 hasConcept C44249647 @default.
- W2790216347 hasConcept C45804977 @default.
- W2790216347 hasConcept C501593827 @default.
- W2790216347 hasConcept C50522688 @default.
- W2790216347 hasConcept C58471807 @default.
- W2790216347 hasConcept C71924100 @default.
- W2790216347 hasConcept C86803240 @default.
- W2790216347 hasConcept C89423630 @default.
- W2790216347 hasConceptScore W2790216347C119857082 @default.
- W2790216347 hasConceptScore W2790216347C126322002 @default.
- W2790216347 hasConceptScore W2790216347C144024400 @default.
- W2790216347 hasConceptScore W2790216347C149923435 @default.
- W2790216347 hasConceptScore W2790216347C151956035 @default.