Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790252648> ?p ?o ?g. }
- W2790252648 endingPage "16" @default.
- W2790252648 startingPage "16" @default.
- W2790252648 abstract "Solving differential equations of fractional (i.e., non-integer) order in an accurate, reliable and efficient way is much more difficult than in the standard integer-order case; moreover, the majority of the computational tools do not provide built-in functions for this kind of problem. In this paper, we review two of the most effective families of numerical methods for fractional-order problems, and we discuss some of the major computational issues such as the efficient treatment of the persistent memory term and the solution of the nonlinear systems involved in implicit methods. We present therefore a set of MATLAB routines specifically devised for solving three families of fractional-order problems: fractional differential equations (FDEs) (also for the non-scalar case), multi-order systems (MOSs) of FDEs and multi-term FDEs (also for the non-scalar case); some examples are provided to illustrate the use of the routines." @default.
- W2790252648 created "2018-03-29" @default.
- W2790252648 creator A5089541652 @default.
- W2790252648 date "2018-01-23" @default.
- W2790252648 modified "2023-10-14" @default.
- W2790252648 title "Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial" @default.
- W2790252648 cites W1963581131 @default.
- W2790252648 cites W1963675052 @default.
- W2790252648 cites W1967595729 @default.
- W2790252648 cites W1978349032 @default.
- W2790252648 cites W1979313496 @default.
- W2790252648 cites W1982267083 @default.
- W2790252648 cites W1991339940 @default.
- W2790252648 cites W1991982189 @default.
- W2790252648 cites W1996087276 @default.
- W2790252648 cites W2000434452 @default.
- W2790252648 cites W2003707630 @default.
- W2790252648 cites W2009587056 @default.
- W2790252648 cites W2021616075 @default.
- W2790252648 cites W2027035149 @default.
- W2790252648 cites W2031029580 @default.
- W2790252648 cites W2045751360 @default.
- W2790252648 cites W2061599022 @default.
- W2790252648 cites W2063246020 @default.
- W2790252648 cites W2065254635 @default.
- W2790252648 cites W2090886631 @default.
- W2790252648 cites W2093225350 @default.
- W2790252648 cites W2102450753 @default.
- W2790252648 cites W2154050526 @default.
- W2790252648 cites W2314221121 @default.
- W2790252648 cites W2565756501 @default.
- W2790252648 cites W2588795372 @default.
- W2790252648 cites W2742077408 @default.
- W2790252648 cites W2767867879 @default.
- W2790252648 cites W2768938608 @default.
- W2790252648 cites W2782855242 @default.
- W2790252648 cites W3102770794 @default.
- W2790252648 cites W3102939129 @default.
- W2790252648 cites W3148434010 @default.
- W2790252648 cites W4253062931 @default.
- W2790252648 cites W2580382324 @default.
- W2790252648 doi "https://doi.org/10.3390/math6020016" @default.
- W2790252648 hasPublicationYear "2018" @default.
- W2790252648 type Work @default.
- W2790252648 sameAs 2790252648 @default.
- W2790252648 citedByCount "248" @default.
- W2790252648 countsByYear W27902526482017 @default.
- W2790252648 countsByYear W27902526482018 @default.
- W2790252648 countsByYear W27902526482019 @default.
- W2790252648 countsByYear W27902526482020 @default.
- W2790252648 countsByYear W27902526482021 @default.
- W2790252648 countsByYear W27902526482022 @default.
- W2790252648 countsByYear W27902526482023 @default.
- W2790252648 crossrefType "journal-article" @default.
- W2790252648 hasAuthorship W2790252648A5089541652 @default.
- W2790252648 hasBestOaLocation W27902526481 @default.
- W2790252648 hasConcept C10138342 @default.
- W2790252648 hasConcept C121332964 @default.
- W2790252648 hasConcept C126255220 @default.
- W2790252648 hasConcept C134306372 @default.
- W2790252648 hasConcept C154249771 @default.
- W2790252648 hasConcept C158622935 @default.
- W2790252648 hasConcept C162324750 @default.
- W2790252648 hasConcept C177264268 @default.
- W2790252648 hasConcept C182306322 @default.
- W2790252648 hasConcept C199360897 @default.
- W2790252648 hasConcept C2524010 @default.
- W2790252648 hasConcept C2777904410 @default.
- W2790252648 hasConcept C2778400913 @default.
- W2790252648 hasConcept C2780365114 @default.
- W2790252648 hasConcept C28826006 @default.
- W2790252648 hasConcept C33923547 @default.
- W2790252648 hasConcept C41008148 @default.
- W2790252648 hasConcept C57691317 @default.
- W2790252648 hasConcept C61797465 @default.
- W2790252648 hasConcept C62520636 @default.
- W2790252648 hasConcept C78045399 @default.
- W2790252648 hasConcept C97137487 @default.
- W2790252648 hasConceptScore W2790252648C10138342 @default.
- W2790252648 hasConceptScore W2790252648C121332964 @default.
- W2790252648 hasConceptScore W2790252648C126255220 @default.
- W2790252648 hasConceptScore W2790252648C134306372 @default.
- W2790252648 hasConceptScore W2790252648C154249771 @default.
- W2790252648 hasConceptScore W2790252648C158622935 @default.
- W2790252648 hasConceptScore W2790252648C162324750 @default.
- W2790252648 hasConceptScore W2790252648C177264268 @default.
- W2790252648 hasConceptScore W2790252648C182306322 @default.
- W2790252648 hasConceptScore W2790252648C199360897 @default.
- W2790252648 hasConceptScore W2790252648C2524010 @default.
- W2790252648 hasConceptScore W2790252648C2777904410 @default.
- W2790252648 hasConceptScore W2790252648C2778400913 @default.
- W2790252648 hasConceptScore W2790252648C2780365114 @default.
- W2790252648 hasConceptScore W2790252648C28826006 @default.
- W2790252648 hasConceptScore W2790252648C33923547 @default.
- W2790252648 hasConceptScore W2790252648C41008148 @default.
- W2790252648 hasConceptScore W2790252648C57691317 @default.
- W2790252648 hasConceptScore W2790252648C61797465 @default.
- W2790252648 hasConceptScore W2790252648C62520636 @default.