Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790275320> ?p ?o ?g. }
- W2790275320 endingPage "e0193659" @default.
- W2790275320 startingPage "e0193659" @default.
- W2790275320 abstract "Low–cost biosorbents (ginkgo leaf, osmanthus leaf, banyan leaf, magnolia leaf, holly leaf, walnut shell, and grapefruit peel) were evaluated in the simultaneous removal of La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Yb3+, Lu3+, UO22+, Th4+, Y3+, Co2+, Zn2+, Ni2+, and Sr2+ from aqueous solutions. In single metal systems, all adsorbents exhibited good to excellent adsorption capacities toward lanthanides and actinides. In a simulated multicomponent mixed solution study, higher selectivity and efficiency were observed for Th4+ over other metal cations, with ginkgo leaves providing the highest adsorptivity (81.2%) among the seven biosorbents. Through optimization studies, the selectivity of Th4+ biosorption on ginkgo leaf was found to be highly pH–dependent, with optimum Th4+ removal observed at pH 4. Th4+ adsorption was found to proceed rapidly with an equilibrium time of 120 min and conform to pseudo–second–order kinetics. The Langmuir isotherm model best described Th4+ biosorption, with a maximum monolayer adsorption capacity of 103.8 mg g–1. Thermodynamic calculations indicated that Th4+ biosorption was spontaneous and endothermic. Furthermore, the physical and chemical properties of the adsorbent were determined by scanning electron microscopy, Brunauer–Emmett–Teller, X-ray powder diffraction, and Fourier transform infrared analysis. The biosorption of Th from a real sample (monazite mineral) was studied and an efficiency of 90.4% was achieved from nitric acid at pH 4 using ginkgo leaves." @default.
- W2790275320 created "2018-03-29" @default.
- W2790275320 creator A5021229339 @default.
- W2790275320 creator A5025180773 @default.
- W2790275320 creator A5032714454 @default.
- W2790275320 creator A5051392517 @default.
- W2790275320 creator A5059876752 @default.
- W2790275320 creator A5062531491 @default.
- W2790275320 creator A5065875464 @default.
- W2790275320 creator A5082391022 @default.
- W2790275320 date "2018-03-06" @default.
- W2790275320 modified "2023-09-27" @default.
- W2790275320 title "Selective biosorption of thorium (IV) from aqueous solutions by ginkgo leaf" @default.
- W2790275320 cites W1679038860 @default.
- W2790275320 cites W1836389931 @default.
- W2790275320 cites W1913847465 @default.
- W2790275320 cites W1966927402 @default.
- W2790275320 cites W1969238486 @default.
- W2790275320 cites W1969562668 @default.
- W2790275320 cites W1971898032 @default.
- W2790275320 cites W1973044745 @default.
- W2790275320 cites W1975675464 @default.
- W2790275320 cites W1980562949 @default.
- W2790275320 cites W1981384871 @default.
- W2790275320 cites W1983555729 @default.
- W2790275320 cites W1987669499 @default.
- W2790275320 cites W1987727121 @default.
- W2790275320 cites W1991027595 @default.
- W2790275320 cites W1992985984 @default.
- W2790275320 cites W1998359932 @default.
- W2790275320 cites W2008707803 @default.
- W2790275320 cites W2009722759 @default.
- W2790275320 cites W2009858240 @default.
- W2790275320 cites W2011777060 @default.
- W2790275320 cites W2021020109 @default.
- W2790275320 cites W2026820464 @default.
- W2790275320 cites W2028188537 @default.
- W2790275320 cites W2028472497 @default.
- W2790275320 cites W2031420292 @default.
- W2790275320 cites W2031750609 @default.
- W2790275320 cites W2034574511 @default.
- W2790275320 cites W2035739193 @default.
- W2790275320 cites W2036728850 @default.
- W2790275320 cites W2038036563 @default.
- W2790275320 cites W2038577512 @default.
- W2790275320 cites W2039099512 @default.
- W2790275320 cites W2039698484 @default.
- W2790275320 cites W2043643421 @default.
- W2790275320 cites W2043951855 @default.
- W2790275320 cites W2048585081 @default.
- W2790275320 cites W2049962167 @default.
- W2790275320 cites W2053055758 @default.
- W2790275320 cites W2054691760 @default.
- W2790275320 cites W2055994234 @default.
- W2790275320 cites W2058271646 @default.
- W2790275320 cites W2061555189 @default.
- W2790275320 cites W2066318648 @default.
- W2790275320 cites W2070486735 @default.
- W2790275320 cites W2073688078 @default.
- W2790275320 cites W2076005000 @default.
- W2790275320 cites W2076444251 @default.
- W2790275320 cites W2077173793 @default.
- W2790275320 cites W2082490632 @default.
- W2790275320 cites W2083574873 @default.
- W2790275320 cites W2084895845 @default.
- W2790275320 cites W2087669849 @default.
- W2790275320 cites W2090927929 @default.
- W2790275320 cites W2091784825 @default.
- W2790275320 cites W2093653536 @default.
- W2790275320 cites W2105409436 @default.
- W2790275320 cites W2107605596 @default.
- W2790275320 cites W2127364676 @default.
- W2790275320 cites W2131602139 @default.
- W2790275320 cites W2137124178 @default.
- W2790275320 cites W2144663691 @default.
- W2790275320 cites W2147925630 @default.
- W2790275320 cites W2156338877 @default.
- W2790275320 cites W2159232912 @default.
- W2790275320 cites W2159433301 @default.
- W2790275320 cites W2165427064 @default.
- W2790275320 cites W2166109725 @default.
- W2790275320 cites W2167035813 @default.
- W2790275320 cites W2275265060 @default.
- W2790275320 cites W2283839179 @default.
- W2790275320 cites W2294902065 @default.
- W2790275320 cites W2330406910 @default.
- W2790275320 cites W2398298448 @default.
- W2790275320 cites W2515223998 @default.
- W2790275320 cites W2594455209 @default.
- W2790275320 cites W2724280323 @default.
- W2790275320 cites W2735907173 @default.
- W2790275320 cites W2737186634 @default.
- W2790275320 cites W2743212506 @default.
- W2790275320 cites W2765102527 @default.
- W2790275320 cites W909952842 @default.
- W2790275320 doi "https://doi.org/10.1371/journal.pone.0193659" @default.
- W2790275320 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5839565" @default.
- W2790275320 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29509801" @default.