Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790330288> ?p ?o ?g. }
- W2790330288 endingPage "18452" @default.
- W2790330288 startingPage "18431" @default.
- W2790330288 abstract "We propose a machine learning approach, based on analytical inference in Gaussian process regression (GP), to locate users from their uplink received signal strength (RSS) data in a distributed massive multiple-input-multiple-output setup. The training RSS data is considered noise-free, while the test RSS data is assumed to be noisy due to shadowing effects of the wireless channel. We first apply an analytical moment matching-based GP method, namely, the Gaussian approximation GP (GaGP), and make the necessary extensions to suit the problem under study. The GaGP method learns from the stochastic nature of the test RSS data to provide more realistic 2σ error-bars on the estimated locations than the conventional GP (CGP) method. Despite the improvement in 2σ error-bars, simulation studies reveal that the GaGP method achieves similar root-mean-squared estimation error (RMSE) performance as the CGP method. To address this concern, we propose a new GP method, namely the reconstruction-cum-Gaussian-approximation GP (RecGaGP) method. RecGaGP not only achieves lower RMSE values than the CGP and GaGP methods, but also provides realistic 2σ error-bars on the estimated locations. This ability is achieved by first reconstructing the test RSS from a low-dimensional principal subspace of the noise-free training RSS and then learning from the statistical properties of the residual noise present. For both the GaGP and RecGaGP methods, closed-form expressions are derived for the estimated user locations and the associated 2σ error-bars. Numerical studies reveal that the GaGP and RecGaGP methods indeed provide realistic 2σ error-bars on the estimated user locations and their RMSE performances are very close to the Cramer-Rao lower bounds. Also, their RMSE performances saturate beyond a certain point when the number of BS antennas and/or the number of training locations are increased." @default.
- W2790330288 created "2018-03-29" @default.
- W2790330288 creator A5040942789 @default.
- W2790330288 creator A5058494146 @default.
- W2790330288 creator A5081948892 @default.
- W2790330288 creator A5089270885 @default.
- W2790330288 date "2018-01-01" @default.
- W2790330288 modified "2023-10-17" @default.
- W2790330288 title "Analytical Approximation-Based Machine Learning Methods for User Positioning in Distributed Massive MIMO" @default.
- W2790330288 cites W1486606806 @default.
- W2790330288 cites W1547144619 @default.
- W2790330288 cites W1790231888 @default.
- W2790330288 cites W1860447447 @default.
- W2790330288 cites W1980560153 @default.
- W2790330288 cites W2006805041 @default.
- W2790330288 cites W2039216363 @default.
- W2790330288 cites W2060437595 @default.
- W2790330288 cites W2098723226 @default.
- W2790330288 cites W2102987342 @default.
- W2790330288 cites W2111336388 @default.
- W2790330288 cites W2128728535 @default.
- W2790330288 cites W2146851580 @default.
- W2790330288 cites W2147601077 @default.
- W2790330288 cites W2154962128 @default.
- W2790330288 cites W2163993204 @default.
- W2790330288 cites W2231976888 @default.
- W2790330288 cites W2237811496 @default.
- W2790330288 cites W2286275639 @default.
- W2790330288 cites W2294798173 @default.
- W2790330288 cites W2309512289 @default.
- W2790330288 cites W2314492890 @default.
- W2790330288 cites W2341433667 @default.
- W2790330288 cites W2469797310 @default.
- W2790330288 cites W2492689404 @default.
- W2790330288 cites W2548702916 @default.
- W2790330288 cites W2599936006 @default.
- W2790330288 cites W2614551968 @default.
- W2790330288 cites W2962769385 @default.
- W2790330288 cites W2963165838 @default.
- W2790330288 cites W2963809637 @default.
- W2790330288 cites W2964326308 @default.
- W2790330288 cites W3100857292 @default.
- W2790330288 cites W4379358956 @default.
- W2790330288 doi "https://doi.org/10.1109/access.2018.2805841" @default.
- W2790330288 hasPublicationYear "2018" @default.
- W2790330288 type Work @default.
- W2790330288 sameAs 2790330288 @default.
- W2790330288 citedByCount "13" @default.
- W2790330288 countsByYear W27903302882019 @default.
- W2790330288 countsByYear W27903302882021 @default.
- W2790330288 countsByYear W27903302882022 @default.
- W2790330288 countsByYear W27903302882023 @default.
- W2790330288 crossrefType "journal-article" @default.
- W2790330288 hasAuthorship W2790330288A5040942789 @default.
- W2790330288 hasAuthorship W2790330288A5058494146 @default.
- W2790330288 hasAuthorship W2790330288A5081948892 @default.
- W2790330288 hasAuthorship W2790330288A5089270885 @default.
- W2790330288 hasBestOaLocation W27903302881 @default.
- W2790330288 hasConcept C105795698 @default.
- W2790330288 hasConcept C111919701 @default.
- W2790330288 hasConcept C11413529 @default.
- W2790330288 hasConcept C115961682 @default.
- W2790330288 hasConcept C119857082 @default.
- W2790330288 hasConcept C139945424 @default.
- W2790330288 hasConcept C154945302 @default.
- W2790330288 hasConcept C2385561 @default.
- W2790330288 hasConcept C33923547 @default.
- W2790330288 hasConcept C41008148 @default.
- W2790330288 hasConcept C81692654 @default.
- W2790330288 hasConcept C99498987 @default.
- W2790330288 hasConceptScore W2790330288C105795698 @default.
- W2790330288 hasConceptScore W2790330288C111919701 @default.
- W2790330288 hasConceptScore W2790330288C11413529 @default.
- W2790330288 hasConceptScore W2790330288C115961682 @default.
- W2790330288 hasConceptScore W2790330288C119857082 @default.
- W2790330288 hasConceptScore W2790330288C139945424 @default.
- W2790330288 hasConceptScore W2790330288C154945302 @default.
- W2790330288 hasConceptScore W2790330288C2385561 @default.
- W2790330288 hasConceptScore W2790330288C33923547 @default.
- W2790330288 hasConceptScore W2790330288C41008148 @default.
- W2790330288 hasConceptScore W2790330288C81692654 @default.
- W2790330288 hasConceptScore W2790330288C99498987 @default.
- W2790330288 hasFunder F4320334593 @default.
- W2790330288 hasLocation W27903302881 @default.
- W2790330288 hasLocation W27903302882 @default.
- W2790330288 hasOpenAccess W2790330288 @default.
- W2790330288 hasPrimaryLocation W27903302881 @default.
- W2790330288 hasRelatedWork W2357143896 @default.
- W2790330288 hasRelatedWork W2961085424 @default.
- W2790330288 hasRelatedWork W2995227436 @default.
- W2790330288 hasRelatedWork W3009083793 @default.
- W2790330288 hasRelatedWork W3046775127 @default.
- W2790330288 hasRelatedWork W4285260836 @default.
- W2790330288 hasRelatedWork W4286629047 @default.
- W2790330288 hasRelatedWork W4306321456 @default.
- W2790330288 hasRelatedWork W4306674287 @default.
- W2790330288 hasRelatedWork W4224009465 @default.
- W2790330288 hasVolume "6" @default.