Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790353208> ?p ?o ?g. }
- W2790353208 endingPage "212" @default.
- W2790353208 startingPage "205" @default.
- W2790353208 abstract "Due to technological advancement and the explosive growth of electrically stored information, automated methods are required to aid users in maintaining and processing this huge amount of information. Experts, as well as machine learning processes on large volumes of data, are the main sources of knowledge. Knowledge extraction is an important step in framing expert and intelligent systems. However, the knowledge extraction phase is very slow or even impossible due to noise and large size of data. To enhance the productivity of machine learning algorithms, feature selection or attribute reduction plays a key role in the selection of relevant and non-redundant features to improve the performance of classifiers and interpretability of data. Many areas like machine learning, image processing, data mining, natural language processing and Bioinformatics, etc., which have high relevancy to expert and intelligent systems, are applications of feature selection. Rough set theory has been successfully applied for attribute reduction, but this theory is inadequate in the case of attribute reduction of real-valued data set as it may lose some information during the discretization process. Fuzzy and rough set theories have been combined and various attribute selection techniques were proposed, which can easily handle the real-valued data. An intuitionistic fuzzy set possesses a strong ability to represent information and better describing the uncertainty when compared to the classical fuzzy set theory as it considers positive, negative and hesitancy degree simultaneously for an object to belong to a set. This paper proposes a novel mechanism of attribute selection using tolerance-based intuitionistic fuzzy rough set theory. For this, we present tolerance-based intuitionistic fuzzy lower and upper approximations and formulate a degree of dependency of decision features over the set of conditional features. Moreover, the basic results on lower and upper approximations based on rough sets are extended for intuitionistic fuzzy rough sets and analogous results are established. In the end, the proposed algorithm is applied to an example data set and the comparison between tolerance-based fuzzy rough and intuitionistic fuzzy rough sets approaches for feature selection is presented. The proposed concept is found to be better performing in the form of selected attributes." @default.
- W2790353208 created "2018-03-29" @default.
- W2790353208 creator A5014495067 @default.
- W2790353208 creator A5046454544 @default.
- W2790353208 creator A5063772338 @default.
- W2790353208 creator A5067925906 @default.
- W2790353208 date "2018-07-01" @default.
- W2790353208 modified "2023-10-18" @default.
- W2790353208 title "Tolerance-based intuitionistic fuzzy-rough set approach for attribute reduction" @default.
- W2790353208 cites W1591618909 @default.
- W2790353208 cites W1915960941 @default.
- W2790353208 cites W1967116708 @default.
- W2790353208 cites W1976210939 @default.
- W2790353208 cites W1976239553 @default.
- W2790353208 cites W1980564456 @default.
- W2790353208 cites W1982675899 @default.
- W2790353208 cites W1985326909 @default.
- W2790353208 cites W1986547874 @default.
- W2790353208 cites W1986666674 @default.
- W2790353208 cites W1990116832 @default.
- W2790353208 cites W1996182740 @default.
- W2790353208 cites W2005993522 @default.
- W2790353208 cites W2018326882 @default.
- W2790353208 cites W2024742635 @default.
- W2790353208 cites W2027654459 @default.
- W2790353208 cites W2029377923 @default.
- W2790353208 cites W2047999477 @default.
- W2790353208 cites W2059354089 @default.
- W2790353208 cites W2066913191 @default.
- W2790353208 cites W2074145995 @default.
- W2790353208 cites W2079438262 @default.
- W2790353208 cites W2088556585 @default.
- W2790353208 cites W2089882021 @default.
- W2790353208 cites W2091275864 @default.
- W2790353208 cites W2091650466 @default.
- W2790353208 cites W2115594409 @default.
- W2790353208 cites W2128771953 @default.
- W2790353208 cites W2133462743 @default.
- W2790353208 cites W2143040521 @default.
- W2790353208 cites W2155257039 @default.
- W2790353208 cites W2160307100 @default.
- W2790353208 cites W2162364423 @default.
- W2790353208 cites W2202315680 @default.
- W2790353208 cites W2519715111 @default.
- W2790353208 cites W2621679050 @default.
- W2790353208 cites W4211007335 @default.
- W2790353208 doi "https://doi.org/10.1016/j.eswa.2018.02.009" @default.
- W2790353208 hasPublicationYear "2018" @default.
- W2790353208 type Work @default.
- W2790353208 sameAs 2790353208 @default.
- W2790353208 citedByCount "52" @default.
- W2790353208 countsByYear W27903532082018 @default.
- W2790353208 countsByYear W27903532082019 @default.
- W2790353208 countsByYear W27903532082020 @default.
- W2790353208 countsByYear W27903532082021 @default.
- W2790353208 countsByYear W27903532082022 @default.
- W2790353208 countsByYear W27903532082023 @default.
- W2790353208 crossrefType "journal-article" @default.
- W2790353208 hasAuthorship W2790353208A5014495067 @default.
- W2790353208 hasAuthorship W2790353208A5046454544 @default.
- W2790353208 hasAuthorship W2790353208A5063772338 @default.
- W2790353208 hasAuthorship W2790353208A5067925906 @default.
- W2790353208 hasConcept C111012933 @default.
- W2790353208 hasConcept C111335779 @default.
- W2790353208 hasConcept C119857082 @default.
- W2790353208 hasConcept C120567893 @default.
- W2790353208 hasConcept C124101348 @default.
- W2790353208 hasConcept C148483581 @default.
- W2790353208 hasConcept C154945302 @default.
- W2790353208 hasConcept C17209119 @default.
- W2790353208 hasConcept C2524010 @default.
- W2790353208 hasConcept C2781067378 @default.
- W2790353208 hasConcept C33923547 @default.
- W2790353208 hasConcept C41008148 @default.
- W2790353208 hasConcept C42011625 @default.
- W2790353208 hasConcept C58166 @default.
- W2790353208 hasConceptScore W2790353208C111012933 @default.
- W2790353208 hasConceptScore W2790353208C111335779 @default.
- W2790353208 hasConceptScore W2790353208C119857082 @default.
- W2790353208 hasConceptScore W2790353208C120567893 @default.
- W2790353208 hasConceptScore W2790353208C124101348 @default.
- W2790353208 hasConceptScore W2790353208C148483581 @default.
- W2790353208 hasConceptScore W2790353208C154945302 @default.
- W2790353208 hasConceptScore W2790353208C17209119 @default.
- W2790353208 hasConceptScore W2790353208C2524010 @default.
- W2790353208 hasConceptScore W2790353208C2781067378 @default.
- W2790353208 hasConceptScore W2790353208C33923547 @default.
- W2790353208 hasConceptScore W2790353208C41008148 @default.
- W2790353208 hasConceptScore W2790353208C42011625 @default.
- W2790353208 hasConceptScore W2790353208C58166 @default.
- W2790353208 hasFunder F4320322724 @default.
- W2790353208 hasLocation W27903532081 @default.
- W2790353208 hasOpenAccess W2790353208 @default.
- W2790353208 hasPrimaryLocation W27903532081 @default.
- W2790353208 hasRelatedWork W1521417790 @default.
- W2790353208 hasRelatedWork W1985015628 @default.
- W2790353208 hasRelatedWork W2117389543 @default.
- W2790353208 hasRelatedWork W2204496524 @default.