Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790387744> ?p ?o ?g. }
- W2790387744 abstract "Abstract For prostate cancer patients, timing and intensity of therapy are adjusted based on their prognosis. Clinical and pathological factors, and recently, gene expression-based signatures have been shown to predict metastatic prostate cancer. Previous studies used labelled datasets, i.e. those with information on the metastasis outcome, to discover gene signatures to predict metastasis. Due to steady progression of prostate cancer, datasets for this cancer have a limited number of labelled samples but more unlabelled samples. In addition to this issue, the high dimensionality of the gene expression data also poses a significant challenge to train a classifier and predict metastasis accurately. In this study, we aim to boost the prediction accuracy by utilizing both labelled and unlabelled datasets together. We propose Deep Genomic Signature (DGS), a method based on Denoising Auto-Encoders (DAEs) and transfer learning. DGS has the following steps: first, we train a DAE on a large unlabelled gene expression dataset to extract the most salient features of its samples. Then, we train another DAE on a small labelled dataset for a similar purpose. Since the labelled dataset is small, we employ a transfer learning approach and use the parameters learned from the first DAE in the second one. This approach enables us to train a large DAE on a small dataset. After training the second DAE, we obtain the list of genes with high weights by applying a standard deviation filter on the transferred and learned weights. Finally, we train an elastic net logistic regression model on the expression of the selected genes to predict metastasis. Because of the elastic net regularization, some of the selected genes have non-zero coefficients in the classifier which we consider as the DGS gene signature for metastasis. We apply DGS to six labelled and one large unlabelled prostate cancer datasets. Results on five validation datasets indicate that DGS outperforms state-of-the-art gene signatures (obtained from only labelled datasets) in terms of prediction accuracy. Survival analyses demonstrate the potential clinical utility of our gene signature that adds novel prognostic information to the well-established clinical factors and the state-of-the-art gene signatures. Finally, pathway analysis reveals that the DGS gene signature captures the hallmarks of prostate cancer metastasis. These results suggest that our method helps to identify a robust gene signature that may improve patient management." @default.
- W2790387744 created "2018-03-29" @default.
- W2790387744 creator A5014582211 @default.
- W2790387744 creator A5018267399 @default.
- W2790387744 creator A5030965346 @default.
- W2790387744 creator A5032201078 @default.
- W2790387744 creator A5032352229 @default.
- W2790387744 creator A5036712011 @default.
- W2790387744 creator A5044704274 @default.
- W2790387744 creator A5050325886 @default.
- W2790387744 date "2018-03-04" @default.
- W2790387744 modified "2023-09-26" @default.
- W2790387744 title "Deep Genomic Signature for early metastasis prediction in prostate cancer" @default.
- W2790387744 cites W1963579367 @default.
- W2790387744 cites W1998343146 @default.
- W2790387744 cites W2002028723 @default.
- W2790387744 cites W2002517365 @default.
- W2790387744 cites W2006617902 @default.
- W2790387744 cites W2028776361 @default.
- W2790387744 cites W2055748356 @default.
- W2790387744 cites W2083763767 @default.
- W2790387744 cites W2089375355 @default.
- W2790387744 cites W2165389801 @default.
- W2790387744 cites W2259632819 @default.
- W2790387744 cites W2328176404 @default.
- W2790387744 cites W2404901863 @default.
- W2790387744 cites W2416425506 @default.
- W2790387744 cites W2555803041 @default.
- W2790387744 cites W2596327728 @default.
- W2790387744 cites W2601335591 @default.
- W2790387744 cites W2604768144 @default.
- W2790387744 cites W2735781373 @default.
- W2790387744 cites W2736137960 @default.
- W2790387744 cites W2752074361 @default.
- W2790387744 cites W2911884040 @default.
- W2790387744 doi "https://doi.org/10.1101/276055" @default.
- W2790387744 hasPublicationYear "2018" @default.
- W2790387744 type Work @default.
- W2790387744 sameAs 2790387744 @default.
- W2790387744 citedByCount "9" @default.
- W2790387744 countsByYear W27903877442018 @default.
- W2790387744 countsByYear W27903877442019 @default.
- W2790387744 countsByYear W27903877442020 @default.
- W2790387744 countsByYear W27903877442021 @default.
- W2790387744 countsByYear W27903877442022 @default.
- W2790387744 crossrefType "posted-content" @default.
- W2790387744 hasAuthorship W2790387744A5014582211 @default.
- W2790387744 hasAuthorship W2790387744A5018267399 @default.
- W2790387744 hasAuthorship W2790387744A5030965346 @default.
- W2790387744 hasAuthorship W2790387744A5032201078 @default.
- W2790387744 hasAuthorship W2790387744A5032352229 @default.
- W2790387744 hasAuthorship W2790387744A5036712011 @default.
- W2790387744 hasAuthorship W2790387744A5044704274 @default.
- W2790387744 hasAuthorship W2790387744A5050325886 @default.
- W2790387744 hasBestOaLocation W27903877441 @default.
- W2790387744 hasConcept C119857082 @default.
- W2790387744 hasConcept C121608353 @default.
- W2790387744 hasConcept C126322002 @default.
- W2790387744 hasConcept C150899416 @default.
- W2790387744 hasConcept C151956035 @default.
- W2790387744 hasConcept C153180895 @default.
- W2790387744 hasConcept C154945302 @default.
- W2790387744 hasConcept C2779013556 @default.
- W2790387744 hasConcept C2780192828 @default.
- W2790387744 hasConcept C41008148 @default.
- W2790387744 hasConcept C70518039 @default.
- W2790387744 hasConcept C70721500 @default.
- W2790387744 hasConcept C71924100 @default.
- W2790387744 hasConcept C86803240 @default.
- W2790387744 hasConcept C95623464 @default.
- W2790387744 hasConceptScore W2790387744C119857082 @default.
- W2790387744 hasConceptScore W2790387744C121608353 @default.
- W2790387744 hasConceptScore W2790387744C126322002 @default.
- W2790387744 hasConceptScore W2790387744C150899416 @default.
- W2790387744 hasConceptScore W2790387744C151956035 @default.
- W2790387744 hasConceptScore W2790387744C153180895 @default.
- W2790387744 hasConceptScore W2790387744C154945302 @default.
- W2790387744 hasConceptScore W2790387744C2779013556 @default.
- W2790387744 hasConceptScore W2790387744C2780192828 @default.
- W2790387744 hasConceptScore W2790387744C41008148 @default.
- W2790387744 hasConceptScore W2790387744C70518039 @default.
- W2790387744 hasConceptScore W2790387744C70721500 @default.
- W2790387744 hasConceptScore W2790387744C71924100 @default.
- W2790387744 hasConceptScore W2790387744C86803240 @default.
- W2790387744 hasConceptScore W2790387744C95623464 @default.
- W2790387744 hasLocation W27903877441 @default.
- W2790387744 hasOpenAccess W2790387744 @default.
- W2790387744 hasPrimaryLocation W27903877441 @default.
- W2790387744 hasRelatedWork W2212921542 @default.
- W2790387744 hasRelatedWork W2339674921 @default.
- W2790387744 hasRelatedWork W2623427976 @default.
- W2790387744 hasRelatedWork W2921036759 @default.
- W2790387744 hasRelatedWork W2961085424 @default.
- W2790387744 hasRelatedWork W3133411644 @default.
- W2790387744 hasRelatedWork W4220663171 @default.
- W2790387744 hasRelatedWork W4281382123 @default.
- W2790387744 hasRelatedWork W4308262314 @default.
- W2790387744 hasRelatedWork W4377081939 @default.
- W2790387744 isParatext "false" @default.
- W2790387744 isRetracted "false" @default.