Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790394089> ?p ?o ?g. }
- W2790394089 endingPage "12" @default.
- W2790394089 startingPage "1" @default.
- W2790394089 abstract "Biologically-derived hydrocarbons are considered to have great potential as next-generation biofuels owing to the similarity of their chemical properties to contemporary diesel and jet fuels. However, the low yield of these hydrocarbons in biotechnological production is a major obstacle for commercialization. Several genetic and process engineering approaches have been adopted to increase the yield of hydrocarbon, but a model driven approach has not been implemented so far. Here, we applied a constraint-based metabolic modeling approach in which a variable demand for alkane biosynthesis was imposed, and co-varying reactions were considered as potential targets for further engineering of an E. coli strain already expressing cyanobacterial enzymes towards higher chain alkane production. The reactions that co-varied with the imposed alkane production were found to be mainly associated with the pentose phosphate pathway (PPP) and the lower half of glycolysis. An optimal modeling solution was achieved by imposing increased flux through the reaction catalyzed by glucose-6-phosphate dehydrogenase (zwf) and iteratively removing 7 reactions from the network, leading to an alkane yield of 94.2% of the theoretical maximum conversion determined by in silico analysis at a given biomass rate. To validate the in silico findings, we first performed pathway optimization of the cyanobacterial enzymes in E. coli via different dosages of genes, promoting substrate channelling through protein fusion and inducing substantial equivalent protein expression, which led to a 36-fold increase in alka(e)ne production from 2.8 mg/L to 102 mg/L. Further, engineering of E. coli based on in silico findings, including biomass constraint, led to an increase in the alka(e)ne titer to 425 mg/L (major components being 249 mg/L pentadecane and 160 mg/L heptadecene), a 148.6-fold improvement over the initial strain, respectively; with a yield of 34.2% of the theoretical maximum. The impact of model-assisted engineering was also tested for the production of long chain fatty alcohol, another commercially important molecule sharing the same pathway while differing only at the terminal reaction, and a titer of 1506 mg/L was achieved with a yield of 86.4% of the theoretical maximum. Moreover, the model assisted engineered strains had produced 2.54 g/L and 12.5 g/L of long chain alkane and fatty alcohol, respectively, in the bioreactor under fed-batch cultivation condition. Our study demonstrated successful implementation of a combined in silico modeling approach along with the pathway and process optimization in achieving the highest reported titers of long chain hydrocarbons in E. coli." @default.
- W2790394089 created "2018-03-29" @default.
- W2790394089 creator A5002845291 @default.
- W2790394089 creator A5015314444 @default.
- W2790394089 creator A5018885786 @default.
- W2790394089 creator A5019780955 @default.
- W2790394089 creator A5058911046 @default.
- W2790394089 creator A5070321483 @default.
- W2790394089 creator A5074465437 @default.
- W2790394089 date "2018-03-01" @default.
- W2790394089 modified "2023-10-14" @default.
- W2790394089 title "Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production" @default.
- W2790394089 cites W1493182032 @default.
- W2790394089 cites W1757458658 @default.
- W2790394089 cites W1758395617 @default.
- W2790394089 cites W1819686836 @default.
- W2790394089 cites W1966131214 @default.
- W2790394089 cites W1969253588 @default.
- W2790394089 cites W1969983517 @default.
- W2790394089 cites W1972990890 @default.
- W2790394089 cites W1976034271 @default.
- W2790394089 cites W1977353955 @default.
- W2790394089 cites W1978740720 @default.
- W2790394089 cites W1982029307 @default.
- W2790394089 cites W1995436221 @default.
- W2790394089 cites W2010200303 @default.
- W2790394089 cites W2010930876 @default.
- W2790394089 cites W2013437068 @default.
- W2790394089 cites W2015600749 @default.
- W2790394089 cites W2019303832 @default.
- W2790394089 cites W2019631913 @default.
- W2790394089 cites W2020916135 @default.
- W2790394089 cites W2029512487 @default.
- W2790394089 cites W2038459381 @default.
- W2790394089 cites W2046653743 @default.
- W2790394089 cites W2047527115 @default.
- W2790394089 cites W2055159405 @default.
- W2790394089 cites W2055548616 @default.
- W2790394089 cites W2068045710 @default.
- W2790394089 cites W2077413381 @default.
- W2790394089 cites W2083693802 @default.
- W2790394089 cites W2083922489 @default.
- W2790394089 cites W2084716075 @default.
- W2790394089 cites W2089492028 @default.
- W2790394089 cites W2091523410 @default.
- W2790394089 cites W2094097101 @default.
- W2790394089 cites W2096885254 @default.
- W2790394089 cites W2104984933 @default.
- W2790394089 cites W2109193964 @default.
- W2790394089 cites W2109880272 @default.
- W2790394089 cites W2117072353 @default.
- W2790394089 cites W2118518027 @default.
- W2790394089 cites W2123985266 @default.
- W2790394089 cites W2125077835 @default.
- W2790394089 cites W2128746754 @default.
- W2790394089 cites W2129200157 @default.
- W2790394089 cites W2130364940 @default.
- W2790394089 cites W2138824222 @default.
- W2790394089 cites W2149001103 @default.
- W2790394089 cites W2164098890 @default.
- W2790394089 cites W2323454287 @default.
- W2790394089 cites W2323578482 @default.
- W2790394089 cites W2334293709 @default.
- W2790394089 cites W2342429517 @default.
- W2790394089 cites W2411171580 @default.
- W2790394089 cites W2412241444 @default.
- W2790394089 cites W2419380513 @default.
- W2790394089 cites W2477893174 @default.
- W2790394089 cites W2519917040 @default.
- W2790394089 cites W2622095020 @default.
- W2790394089 doi "https://doi.org/10.1016/j.ymben.2018.01.002" @default.
- W2790394089 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29408291" @default.
- W2790394089 hasPublicationYear "2018" @default.
- W2790394089 type Work @default.
- W2790394089 sameAs 2790394089 @default.
- W2790394089 citedByCount "60" @default.
- W2790394089 countsByYear W27903940892018 @default.
- W2790394089 countsByYear W27903940892019 @default.
- W2790394089 countsByYear W27903940892020 @default.
- W2790394089 countsByYear W27903940892021 @default.
- W2790394089 countsByYear W27903940892022 @default.
- W2790394089 countsByYear W27903940892023 @default.
- W2790394089 crossrefType "journal-article" @default.
- W2790394089 hasAuthorship W2790394089A5002845291 @default.
- W2790394089 hasAuthorship W2790394089A5015314444 @default.
- W2790394089 hasAuthorship W2790394089A5018885786 @default.
- W2790394089 hasAuthorship W2790394089A5019780955 @default.
- W2790394089 hasAuthorship W2790394089A5058911046 @default.
- W2790394089 hasAuthorship W2790394089A5070321483 @default.
- W2790394089 hasAuthorship W2790394089A5074465437 @default.
- W2790394089 hasBestOaLocation W27903940892 @default.
- W2790394089 hasConcept C104317684 @default.
- W2790394089 hasConcept C134121241 @default.
- W2790394089 hasConcept C147816474 @default.
- W2790394089 hasConcept C154881586 @default.
- W2790394089 hasConcept C161790260 @default.
- W2790394089 hasConcept C181199279 @default.
- W2790394089 hasConcept C185592680 @default.