Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790403170> ?p ?o ?g. }
- W2790403170 endingPage "61" @default.
- W2790403170 startingPage "46" @default.
- W2790403170 abstract "Injection-induced seismicity and caprock integrity are among the most important concerns in CO2 storage operations. Understanding and minimizing fault/fracture reactivation in the first place, and rupture growth/propagation beyond its surface afterwards, are fundamental to achieve a successful deployment of geologic carbon storage projects. Rock fracture mechanics provides useful concepts to study the propagation of discontinuities such as pre-existing faults and fractures. In this paper, we aim at developing a methodology to investigate the rupture propagation likelihood of faults/fractures inside a reservoir and its surrounding (including the caprock) as a result of reservoir pressurization. In this methodology, mode I (tensile) and mode II (shear) stress intensity factors of a given fault/fracture are calculated based on Linear Elastic Fracture Mechanics. A fault/fracture can propagate either in mode I, mode II or a combination of both (also called mixed-mode) based on the comparison of the stress intensity factors and fracture toughness. The proposed methodology, which has been embedded into a hybrid Finite Element Method-Discrete Element Method in-house code called MDEM, has the capability to obtain the direction of mode I and mode II rupture in front of a fault/fracture tip. Two coefficients are defined as stress intensity paths (κ) for a fault/fracture, as the change of stress intensity factors for the two failure modes of a given discontinuity per unit pore pressure change of the reservoir after injection. Based on these stress intensity path coefficients, a relationship is given to calculate the threshold pressure buildup above which the two propagation modes may occur. We use the proposed methodology to investigate the rupture growth likelihood of faults in and around a closed reservoir due to its pressurization. Simulation results indicate that mode I failure is likely to occur inside the reservoir for faults with low dip angle in compressional stress regimes. However, the initiated mode I failure may not have the chance to grow upwards because the minimum principal is in the vertical direction and thus, the initiated rupture tends to rotate and grow horizontally. In contrast, mode I rupture is likely to occur in the caprock for faults with high dip angle in extensional stress regimes. The initiated rupture may grow upwards if the newly created fracture becomes hydraulically connected with the reservoir. We find that mode II rupture is not likely to occur in any of the investigated scenarios. Simulation results show that the coefficients of the stress intensity factors depend on the faults location, dipping angle, fault length, presence of other faults, reservoir aspect ratio and reservoir and caprock stiffness." @default.
- W2790403170 created "2018-03-29" @default.
- W2790403170 creator A5007846043 @default.
- W2790403170 creator A5017249626 @default.
- W2790403170 creator A5020752085 @default.
- W2790403170 date "2018-04-01" @default.
- W2790403170 modified "2023-10-03" @default.
- W2790403170 title "Numerical analysis of mixed-mode rupture propagation of faults in reservoir-caprock system in CO2 storage" @default.
- W2790403170 cites W1116977932 @default.
- W2790403170 cites W1940799613 @default.
- W2790403170 cites W1975197771 @default.
- W2790403170 cites W1977156689 @default.
- W2790403170 cites W1987177557 @default.
- W2790403170 cites W1992719433 @default.
- W2790403170 cites W1998497549 @default.
- W2790403170 cites W1998754639 @default.
- W2790403170 cites W2001657530 @default.
- W2790403170 cites W2007408769 @default.
- W2790403170 cites W2020610382 @default.
- W2790403170 cites W2020708323 @default.
- W2790403170 cites W2029700247 @default.
- W2790403170 cites W2032645759 @default.
- W2790403170 cites W2037595089 @default.
- W2790403170 cites W2046054808 @default.
- W2790403170 cites W2061240820 @default.
- W2790403170 cites W2062768509 @default.
- W2790403170 cites W2064341022 @default.
- W2790403170 cites W2064793330 @default.
- W2790403170 cites W2072086953 @default.
- W2790403170 cites W2073775990 @default.
- W2790403170 cites W2075739118 @default.
- W2790403170 cites W2079284390 @default.
- W2790403170 cites W2080746477 @default.
- W2790403170 cites W2095716361 @default.
- W2790403170 cites W2118092727 @default.
- W2790403170 cites W2120072167 @default.
- W2790403170 cites W2160226955 @default.
- W2790403170 cites W2169372849 @default.
- W2790403170 cites W2169654088 @default.
- W2790403170 cites W2270941384 @default.
- W2790403170 cites W2290990110 @default.
- W2790403170 cites W2336556815 @default.
- W2790403170 cites W2345875412 @default.
- W2790403170 cites W2412857829 @default.
- W2790403170 cites W2522733675 @default.
- W2790403170 cites W2523650091 @default.
- W2790403170 cites W2563038316 @default.
- W2790403170 cites W2734400542 @default.
- W2790403170 doi "https://doi.org/10.1016/j.ijggc.2018.01.004" @default.
- W2790403170 hasPublicationYear "2018" @default.
- W2790403170 type Work @default.
- W2790403170 sameAs 2790403170 @default.
- W2790403170 citedByCount "10" @default.
- W2790403170 countsByYear W27904031702018 @default.
- W2790403170 countsByYear W27904031702019 @default.
- W2790403170 countsByYear W27904031702020 @default.
- W2790403170 countsByYear W27904031702021 @default.
- W2790403170 countsByYear W27904031702022 @default.
- W2790403170 crossrefType "journal-article" @default.
- W2790403170 hasAuthorship W2790403170A5007846043 @default.
- W2790403170 hasAuthorship W2790403170A5017249626 @default.
- W2790403170 hasAuthorship W2790403170A5020752085 @default.
- W2790403170 hasBestOaLocation W27904031702 @default.
- W2790403170 hasConcept C104308156 @default.
- W2790403170 hasConcept C111919701 @default.
- W2790403170 hasConcept C121332964 @default.
- W2790403170 hasConcept C127313418 @default.
- W2790403170 hasConcept C127413603 @default.
- W2790403170 hasConcept C134306372 @default.
- W2790403170 hasConcept C138885662 @default.
- W2790403170 hasConcept C15627037 @default.
- W2790403170 hasConcept C159985019 @default.
- W2790403170 hasConcept C165205528 @default.
- W2790403170 hasConcept C175551986 @default.
- W2790403170 hasConcept C185715996 @default.
- W2790403170 hasConcept C187320778 @default.
- W2790403170 hasConcept C192562407 @default.
- W2790403170 hasConcept C21036866 @default.
- W2790403170 hasConcept C2777042112 @default.
- W2790403170 hasConcept C2778887201 @default.
- W2790403170 hasConcept C33923547 @default.
- W2790403170 hasConcept C41008148 @default.
- W2790403170 hasConcept C41895202 @default.
- W2790403170 hasConcept C43369102 @default.
- W2790403170 hasConcept C48677424 @default.
- W2790403170 hasConcept C54303661 @default.
- W2790403170 hasConcept C57879066 @default.
- W2790403170 hasConcept C59085676 @default.
- W2790403170 hasConcept C62520636 @default.
- W2790403170 hasConcept C66938386 @default.
- W2790403170 hasConcept C93038891 @default.
- W2790403170 hasConcept C97549433 @default.
- W2790403170 hasConceptScore W2790403170C104308156 @default.
- W2790403170 hasConceptScore W2790403170C111919701 @default.
- W2790403170 hasConceptScore W2790403170C121332964 @default.
- W2790403170 hasConceptScore W2790403170C127313418 @default.
- W2790403170 hasConceptScore W2790403170C127413603 @default.
- W2790403170 hasConceptScore W2790403170C134306372 @default.