Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790408044> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2790408044 abstract "In the strongly connected spanning subgraph ([Formula: see text]) problem, the goal is to find a minimum weight spanning subgraph of a strongly connected directed graph that maintains the strong connectivity. In this paper, we consider the [Formula: see text] problem for two families of geometric directed graphs; [Formula: see text]-spanners and symmetric disk graphs. Given a constant [Formula: see text], a directed graph [Formula: see text] is a [Formula: see text]-spanner of a set of points [Formula: see text] if, for every two points [Formula: see text] and [Formula: see text] in [Formula: see text], there exists a directed path from [Formula: see text] to [Formula: see text] in [Formula: see text] of length at most [Formula: see text], where [Formula: see text] is the Euclidean distance between [Formula: see text] and [Formula: see text]. Given a set [Formula: see text] of points in the plane such that each point [Formula: see text] has a radius [Formula: see text], the symmetric disk graph of [Formula: see text] is a directed graph [Formula: see text], such that [Formula: see text]. Thus, if there exists a directed edge [Formula: see text], then [Formula: see text] exists as well. We present [Formula: see text] and [Formula: see text] approximation algorithms for the [Formula: see text] problem for [Formula: see text]-spanners and for symmetric disk graphs, respectively. Actually, our approach achieves a [Formula: see text]-approximation algorithm for all directed graphs satisfying the property that, for every two nodes [Formula: see text] and [Formula: see text], the ratio between the shortest paths, from [Formula: see text] to [Formula: see text] and from [Formula: see text] to [Formula: see text] in the graph, is at most [Formula: see text]." @default.
- W2790408044 created "2018-03-29" @default.
- W2790408044 creator A5026094478 @default.
- W2790408044 creator A5053775072 @default.
- W2790408044 creator A5086753121 @default.
- W2790408044 date "2017-09-01" @default.
- W2790408044 modified "2023-09-27" @default.
- W2790408044 title "Strongly Connected Spanning Subgraph for Almost Symmetric Networks" @default.
- W2790408044 cites W2020856645 @default.
- W2790408044 cites W2037686175 @default.
- W2790408044 cites W2038858023 @default.
- W2790408044 cites W2051699458 @default.
- W2790408044 cites W2086917808 @default.
- W2790408044 cites W2092113566 @default.
- W2790408044 cites W2952664587 @default.
- W2790408044 cites W2956015669 @default.
- W2790408044 cites W3100826043 @default.
- W2790408044 cites W4234462414 @default.
- W2790408044 doi "https://doi.org/10.1142/s0218195917500042" @default.
- W2790408044 hasPublicationYear "2017" @default.
- W2790408044 type Work @default.
- W2790408044 sameAs 2790408044 @default.
- W2790408044 citedByCount "0" @default.
- W2790408044 crossrefType "journal-article" @default.
- W2790408044 hasAuthorship W2790408044A5026094478 @default.
- W2790408044 hasAuthorship W2790408044A5053775072 @default.
- W2790408044 hasAuthorship W2790408044A5086753121 @default.
- W2790408044 hasConcept C114614502 @default.
- W2790408044 hasConcept C118615104 @default.
- W2790408044 hasConcept C128115575 @default.
- W2790408044 hasConcept C131992880 @default.
- W2790408044 hasConcept C132525143 @default.
- W2790408044 hasConcept C149530733 @default.
- W2790408044 hasConcept C191241153 @default.
- W2790408044 hasConcept C193435613 @default.
- W2790408044 hasConcept C203776342 @default.
- W2790408044 hasConcept C22149727 @default.
- W2790408044 hasConcept C2983226441 @default.
- W2790408044 hasConcept C33923547 @default.
- W2790408044 hasConcept C36038622 @default.
- W2790408044 hasConcept C38754835 @default.
- W2790408044 hasConcept C64271015 @default.
- W2790408044 hasConcept C64331007 @default.
- W2790408044 hasConcept C76444178 @default.
- W2790408044 hasConcept C80899671 @default.
- W2790408044 hasConceptScore W2790408044C114614502 @default.
- W2790408044 hasConceptScore W2790408044C118615104 @default.
- W2790408044 hasConceptScore W2790408044C128115575 @default.
- W2790408044 hasConceptScore W2790408044C131992880 @default.
- W2790408044 hasConceptScore W2790408044C132525143 @default.
- W2790408044 hasConceptScore W2790408044C149530733 @default.
- W2790408044 hasConceptScore W2790408044C191241153 @default.
- W2790408044 hasConceptScore W2790408044C193435613 @default.
- W2790408044 hasConceptScore W2790408044C203776342 @default.
- W2790408044 hasConceptScore W2790408044C22149727 @default.
- W2790408044 hasConceptScore W2790408044C2983226441 @default.
- W2790408044 hasConceptScore W2790408044C33923547 @default.
- W2790408044 hasConceptScore W2790408044C36038622 @default.
- W2790408044 hasConceptScore W2790408044C38754835 @default.
- W2790408044 hasConceptScore W2790408044C64271015 @default.
- W2790408044 hasConceptScore W2790408044C64331007 @default.
- W2790408044 hasConceptScore W2790408044C76444178 @default.
- W2790408044 hasConceptScore W2790408044C80899671 @default.
- W2790408044 hasLocation W27904080441 @default.
- W2790408044 hasOpenAccess W2790408044 @default.
- W2790408044 hasPrimaryLocation W27904080441 @default.
- W2790408044 hasRelatedWork W1563577400 @default.
- W2790408044 hasRelatedWork W1612084178 @default.
- W2790408044 hasRelatedWork W1981556561 @default.
- W2790408044 hasRelatedWork W1991450885 @default.
- W2790408044 hasRelatedWork W2009090738 @default.
- W2790408044 hasRelatedWork W2009792106 @default.
- W2790408044 hasRelatedWork W2023540209 @default.
- W2790408044 hasRelatedWork W2057023080 @default.
- W2790408044 hasRelatedWork W2064938171 @default.
- W2790408044 hasRelatedWork W2090934506 @default.
- W2790408044 hasRelatedWork W2114777650 @default.
- W2790408044 hasRelatedWork W2339652421 @default.
- W2790408044 hasRelatedWork W2755225817 @default.
- W2790408044 hasRelatedWork W2793689048 @default.
- W2790408044 hasRelatedWork W2801391281 @default.
- W2790408044 hasRelatedWork W282020433 @default.
- W2790408044 hasRelatedWork W2914713163 @default.
- W2790408044 hasRelatedWork W2950670108 @default.
- W2790408044 hasRelatedWork W3201716562 @default.
- W2790408044 hasRelatedWork W3211332212 @default.
- W2790408044 isParatext "false" @default.
- W2790408044 isRetracted "false" @default.
- W2790408044 magId "2790408044" @default.
- W2790408044 workType "article" @default.