Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790454503> ?p ?o ?g. }
- W2790454503 endingPage "9" @default.
- W2790454503 startingPage "1" @default.
- W2790454503 abstract "Personalization in e-commerce increases sales by improving customer perception of site quality. However, some demographic data about customers (crucial for the success of the personalization process) not always can be obtained explicitly, as is the case of anonymous web site visitors. The paper describes a user study focused on determining whether it would be possible to categorize the age and gender of individual visitors of a web site through the automatic analysis of their behavior. Three tasks commonly found in e-commerce sites (Point & Click, Drag & Drop and Item Selection) were tested by 592 volunteers and their performance was analyzed using several different statistical methods. The study found consistencies in the execution times of individuals across the different tasks and revealed that age and gender are sufficiently determining factors to support an automatic profiling. Results also showed that relevant information about gender and age can be extracted separately through the individual analysis of each one of the mentioned interaction tasks." @default.
- W2790454503 created "2018-03-29" @default.
- W2790454503 creator A5024242449 @default.
- W2790454503 creator A5069500330 @default.
- W2790454503 creator A5077520649 @default.
- W2790454503 creator A5082091739 @default.
- W2790454503 date "2018-08-01" @default.
- W2790454503 modified "2023-10-18" @default.
- W2790454503 title "The dimension of age and gender as user model demographic factors for automatic personalization in e-commerce sites" @default.
- W2790454503 cites W1533907167 @default.
- W2790454503 cites W1545605750 @default.
- W2790454503 cites W1602368805 @default.
- W2790454503 cites W1964919166 @default.
- W2790454503 cites W1966475597 @default.
- W2790454503 cites W1968407776 @default.
- W2790454503 cites W1973626035 @default.
- W2790454503 cites W1973906766 @default.
- W2790454503 cites W1974043487 @default.
- W2790454503 cites W1975357966 @default.
- W2790454503 cites W1980241046 @default.
- W2790454503 cites W1981148488 @default.
- W2790454503 cites W1985644395 @default.
- W2790454503 cites W1985907191 @default.
- W2790454503 cites W1994107697 @default.
- W2790454503 cites W1996800232 @default.
- W2790454503 cites W2003196793 @default.
- W2790454503 cites W2004847933 @default.
- W2790454503 cites W2007441164 @default.
- W2790454503 cites W2010652395 @default.
- W2790454503 cites W2019787600 @default.
- W2790454503 cites W2020625394 @default.
- W2790454503 cites W2026932242 @default.
- W2790454503 cites W2031192493 @default.
- W2790454503 cites W2049799256 @default.
- W2790454503 cites W2050892478 @default.
- W2790454503 cites W2053020350 @default.
- W2790454503 cites W2054895868 @default.
- W2790454503 cites W2055740367 @default.
- W2790454503 cites W2060295134 @default.
- W2790454503 cites W2062152087 @default.
- W2790454503 cites W2068289206 @default.
- W2790454503 cites W2071238186 @default.
- W2790454503 cites W2073492086 @default.
- W2790454503 cites W2075627482 @default.
- W2790454503 cites W2079832465 @default.
- W2790454503 cites W2084489888 @default.
- W2790454503 cites W2093848374 @default.
- W2790454503 cites W2108818539 @default.
- W2790454503 cites W2127519553 @default.
- W2790454503 cites W2127582504 @default.
- W2790454503 cites W2127937912 @default.
- W2790454503 cites W2142705276 @default.
- W2790454503 cites W2145791110 @default.
- W2790454503 cites W2152091177 @default.
- W2790454503 cites W2156353124 @default.
- W2790454503 cites W2156523753 @default.
- W2790454503 cites W2165934783 @default.
- W2790454503 cites W2167341032 @default.
- W2790454503 cites W2167512430 @default.
- W2790454503 cites W2175434703 @default.
- W2790454503 cites W2327655318 @default.
- W2790454503 doi "https://doi.org/10.1016/j.csi.2018.02.001" @default.
- W2790454503 hasPublicationYear "2018" @default.
- W2790454503 type Work @default.
- W2790454503 sameAs 2790454503 @default.
- W2790454503 citedByCount "16" @default.
- W2790454503 countsByYear W27904545032019 @default.
- W2790454503 countsByYear W27904545032020 @default.
- W2790454503 countsByYear W27904545032021 @default.
- W2790454503 countsByYear W27904545032022 @default.
- W2790454503 countsByYear W27904545032023 @default.
- W2790454503 crossrefType "journal-article" @default.
- W2790454503 hasAuthorship W2790454503A5024242449 @default.
- W2790454503 hasAuthorship W2790454503A5069500330 @default.
- W2790454503 hasAuthorship W2790454503A5077520649 @default.
- W2790454503 hasAuthorship W2790454503A5082091739 @default.
- W2790454503 hasConcept C111919701 @default.
- W2790454503 hasConcept C136764020 @default.
- W2790454503 hasConcept C154945302 @default.
- W2790454503 hasConcept C15744967 @default.
- W2790454503 hasConcept C169760540 @default.
- W2790454503 hasConcept C183003079 @default.
- W2790454503 hasConcept C187191949 @default.
- W2790454503 hasConcept C202444582 @default.
- W2790454503 hasConcept C26760741 @default.
- W2790454503 hasConcept C33676613 @default.
- W2790454503 hasConcept C33923547 @default.
- W2790454503 hasConcept C41008148 @default.
- W2790454503 hasConcept C78597825 @default.
- W2790454503 hasConcept C94124525 @default.
- W2790454503 hasConceptScore W2790454503C111919701 @default.
- W2790454503 hasConceptScore W2790454503C136764020 @default.
- W2790454503 hasConceptScore W2790454503C154945302 @default.
- W2790454503 hasConceptScore W2790454503C15744967 @default.
- W2790454503 hasConceptScore W2790454503C169760540 @default.
- W2790454503 hasConceptScore W2790454503C183003079 @default.
- W2790454503 hasConceptScore W2790454503C187191949 @default.
- W2790454503 hasConceptScore W2790454503C202444582 @default.