Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790492022> ?p ?o ?g. }
- W2790492022 endingPage "2589" @default.
- W2790492022 startingPage "2581" @default.
- W2790492022 abstract "Accurate and economic methods to predict change in protein binding free energy upon mutation are imperative to accelerate the design of proteins for a wide range of applications. Free energy is defined by enthalpic and entropic contributions. Following the recent progresses of Artificial Intelligence-based algorithms for guaranteed NP-hard energy optimization and partition function computation, it becomes possible to quickly compute minimum energy conformations and to reliably estimate the entropic contribution of side-chains in the change of free energy of large protein interfaces.Using guaranteed Cost Function Network algorithms, Rosetta energy functions and Dunbrack's rotamer library, we developed and assessed EasyE and JayZ, two methods for binding affinity estimation that ignore or include conformational entropic contributions on a large benchmark of binding affinity experimental measures. If both approaches outperform most established tools, we observe that side-chain conformational entropy brings little or no improvement on most systems but becomes crucial in some rare cases.as open-source Python/C++ code at sourcesup.renater.fr/projects/easy-jayz.Supplementary data are available at Bioinformatics online." @default.
- W2790492022 created "2018-03-29" @default.
- W2790492022 creator A5053009384 @default.
- W2790492022 creator A5065436134 @default.
- W2790492022 creator A5080878843 @default.
- W2790492022 creator A5081776442 @default.
- W2790492022 date "2018-02-20" @default.
- W2790492022 modified "2023-10-17" @default.
- W2790492022 title "Cost function network-based design of protein–protein interactions: predicting changes in binding affinity" @default.
- W2790492022 cites W1485366229 @default.
- W2790492022 cites W1507197149 @default.
- W2790492022 cites W1556106311 @default.
- W2790492022 cites W1823111029 @default.
- W2790492022 cites W1966185591 @default.
- W2790492022 cites W1980703922 @default.
- W2790492022 cites W1988443389 @default.
- W2790492022 cites W2006912660 @default.
- W2790492022 cites W2011658408 @default.
- W2790492022 cites W2023490488 @default.
- W2790492022 cites W2035432821 @default.
- W2790492022 cites W2042855904 @default.
- W2790492022 cites W2062818807 @default.
- W2790492022 cites W2063184115 @default.
- W2790492022 cites W2073125464 @default.
- W2790492022 cites W2082221689 @default.
- W2790492022 cites W2082527422 @default.
- W2790492022 cites W2086361102 @default.
- W2790492022 cites W2087072039 @default.
- W2790492022 cites W2090013396 @default.
- W2790492022 cites W2092387745 @default.
- W2790492022 cites W2097669648 @default.
- W2790492022 cites W2101701152 @default.
- W2790492022 cites W2102697248 @default.
- W2790492022 cites W2103459989 @default.
- W2790492022 cites W2106775540 @default.
- W2790492022 cites W2115770884 @default.
- W2790492022 cites W2117541321 @default.
- W2790492022 cites W2130479394 @default.
- W2790492022 cites W2141795045 @default.
- W2790492022 cites W2150192011 @default.
- W2790492022 cites W2151581834 @default.
- W2790492022 cites W2152214314 @default.
- W2790492022 cites W2153457180 @default.
- W2790492022 cites W2157807259 @default.
- W2790492022 cites W2163052596 @default.
- W2790492022 cites W2164816598 @default.
- W2790492022 cites W2172114588 @default.
- W2790492022 cites W2173184980 @default.
- W2790492022 cites W2321693457 @default.
- W2790492022 cites W2328911273 @default.
- W2790492022 cites W2342178758 @default.
- W2790492022 cites W2345331290 @default.
- W2790492022 cites W2386790897 @default.
- W2790492022 cites W2538176089 @default.
- W2790492022 cites W2554576124 @default.
- W2790492022 cites W2606439133 @default.
- W2790492022 cites W2612814374 @default.
- W2790492022 doi "https://doi.org/10.1093/bioinformatics/bty092" @default.
- W2790492022 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29474517" @default.
- W2790492022 hasPublicationYear "2018" @default.
- W2790492022 type Work @default.
- W2790492022 sameAs 2790492022 @default.
- W2790492022 citedByCount "10" @default.
- W2790492022 countsByYear W27904920222018 @default.
- W2790492022 countsByYear W27904920222019 @default.
- W2790492022 countsByYear W27904920222020 @default.
- W2790492022 countsByYear W27904920222021 @default.
- W2790492022 countsByYear W27904920222022 @default.
- W2790492022 countsByYear W27904920222023 @default.
- W2790492022 crossrefType "journal-article" @default.
- W2790492022 hasAuthorship W2790492022A5053009384 @default.
- W2790492022 hasAuthorship W2790492022A5065436134 @default.
- W2790492022 hasAuthorship W2790492022A5080878843 @default.
- W2790492022 hasAuthorship W2790492022A5081776442 @default.
- W2790492022 hasBestOaLocation W27904920221 @default.
- W2790492022 hasConcept C106301342 @default.
- W2790492022 hasConcept C111919701 @default.
- W2790492022 hasConcept C11413529 @default.
- W2790492022 hasConcept C121332964 @default.
- W2790492022 hasConcept C13280743 @default.
- W2790492022 hasConcept C14036430 @default.
- W2790492022 hasConcept C152769699 @default.
- W2790492022 hasConcept C178790620 @default.
- W2790492022 hasConcept C185592680 @default.
- W2790492022 hasConcept C185798385 @default.
- W2790492022 hasConcept C205649164 @default.
- W2790492022 hasConcept C32909587 @default.
- W2790492022 hasConcept C41008148 @default.
- W2790492022 hasConcept C45374587 @default.
- W2790492022 hasConcept C47701112 @default.
- W2790492022 hasConcept C519991488 @default.
- W2790492022 hasConcept C55493867 @default.
- W2790492022 hasConcept C69308434 @default.
- W2790492022 hasConcept C78458016 @default.
- W2790492022 hasConcept C86803240 @default.
- W2790492022 hasConcept C97355855 @default.
- W2790492022 hasConceptScore W2790492022C106301342 @default.
- W2790492022 hasConceptScore W2790492022C111919701 @default.