Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790494341> ?p ?o ?g. }
- W2790494341 endingPage "266" @default.
- W2790494341 startingPage "253" @default.
- W2790494341 abstract "Sample preparation is a fundamental preprocessing step needed in almost all biochemical assays and is conveniently automated on a microfluidic lab-on-chip. In digital microfluidics, it is accomplished by a sequence of droplet-mix-split steps on a biochip. Many real-life applications require a sample with multiple concentration factors (CFs). Existing algorithms, while producing multi-CF targets, attempt to share the mix-split steps in order to reduce reactant-cost and sample-preparation time. However, all prior approaches have two limitations: 1) sharing of intermediate droplets can be best effected only when all required target CFs are known a priori and 2) the processing time may vary depending on the allowable error-tolerance in target-CFs. In this paper, we present a cost-effective solution to multi-CF-dilution on-demand, by using only one (or two) mix-split step(s). In order to service dynamically arriving requests of multiple CFs quickly, we prepare dilutions of the sample with a few CFs in advance (called source-CFs), and fill on-chip reservoirs with these fluids. For minimizing the number of such preprocessed CFs, we present an integer linear programming-based method, an approximation algorithm, and a heuristic algorithm. The proposed methods also allow the users to tradeoff the number of on-chip reservoirs against service time for various applications. Simulation results for several target sets demonstrate the superiority of the proposed techniques over prior art in terms of the number of mix-split steps, waste droplets, and reactant usage when the on-chip reservoirs are preloaded with source-CFs using a customized droplet-streaming engine." @default.
- W2790494341 created "2018-03-29" @default.
- W2790494341 creator A5008525558 @default.
- W2790494341 creator A5032341988 @default.
- W2790494341 creator A5033880864 @default.
- W2790494341 creator A5062886706 @default.
- W2790494341 creator A5067730042 @default.
- W2790494341 date "2019-02-01" @default.
- W2790494341 modified "2023-10-17" @default.
- W2790494341 title "Optimization of Multi-Target Sample Preparation On-Demand With Digital Microfluidic Biochips" @default.
- W2790494341 cites W1631230019 @default.
- W2790494341 cites W1752194733 @default.
- W2790494341 cites W1844800652 @default.
- W2790494341 cites W1909235131 @default.
- W2790494341 cites W1973402545 @default.
- W2790494341 cites W1980181699 @default.
- W2790494341 cites W1986373434 @default.
- W2790494341 cites W1992712806 @default.
- W2790494341 cites W1993397663 @default.
- W2790494341 cites W2003193830 @default.
- W2790494341 cites W2005688834 @default.
- W2790494341 cites W2007104312 @default.
- W2790494341 cites W2010357805 @default.
- W2790494341 cites W2011136641 @default.
- W2790494341 cites W2024137802 @default.
- W2790494341 cites W2028748933 @default.
- W2790494341 cites W2028894110 @default.
- W2790494341 cites W2033335004 @default.
- W2790494341 cites W2050577542 @default.
- W2790494341 cites W2052580805 @default.
- W2790494341 cites W2053044040 @default.
- W2790494341 cites W2053074441 @default.
- W2790494341 cites W2059342569 @default.
- W2790494341 cites W2067029875 @default.
- W2790494341 cites W2068411283 @default.
- W2790494341 cites W2084364074 @default.
- W2790494341 cites W2091448675 @default.
- W2790494341 cites W2095086030 @default.
- W2790494341 cites W2098665512 @default.
- W2790494341 cites W2108199669 @default.
- W2790494341 cites W2109834102 @default.
- W2790494341 cites W2115349822 @default.
- W2790494341 cites W2122099538 @default.
- W2790494341 cites W2155781395 @default.
- W2790494341 cites W2157720935 @default.
- W2790494341 cites W2158894328 @default.
- W2790494341 cites W2168567259 @default.
- W2790494341 cites W2261504099 @default.
- W2790494341 cites W2291179588 @default.
- W2790494341 cites W2325509233 @default.
- W2790494341 cites W2337428001 @default.
- W2790494341 cites W2340881701 @default.
- W2790494341 cites W2488722193 @default.
- W2790494341 cites W2510233378 @default.
- W2790494341 cites W2517695883 @default.
- W2790494341 cites W2530040823 @default.
- W2790494341 cites W2612351933 @default.
- W2790494341 cites W2765943750 @default.
- W2790494341 cites W4300550233 @default.
- W2790494341 doi "https://doi.org/10.1109/tcad.2018.2808234" @default.
- W2790494341 hasPublicationYear "2019" @default.
- W2790494341 type Work @default.
- W2790494341 sameAs 2790494341 @default.
- W2790494341 citedByCount "9" @default.
- W2790494341 countsByYear W27904943412019 @default.
- W2790494341 countsByYear W27904943412020 @default.
- W2790494341 countsByYear W27904943412022 @default.
- W2790494341 countsByYear W27904943412023 @default.
- W2790494341 crossrefType "journal-article" @default.
- W2790494341 hasAuthorship W2790494341A5008525558 @default.
- W2790494341 hasAuthorship W2790494341A5032341988 @default.
- W2790494341 hasAuthorship W2790494341A5033880864 @default.
- W2790494341 hasAuthorship W2790494341A5062886706 @default.
- W2790494341 hasAuthorship W2790494341A5067730042 @default.
- W2790494341 hasConcept C111472728 @default.
- W2790494341 hasConcept C11413529 @default.
- W2790494341 hasConcept C119599485 @default.
- W2790494341 hasConcept C127413603 @default.
- W2790494341 hasConcept C138885662 @default.
- W2790494341 hasConcept C154945302 @default.
- W2790494341 hasConcept C165005293 @default.
- W2790494341 hasConcept C165801399 @default.
- W2790494341 hasConcept C171250308 @default.
- W2790494341 hasConcept C173801870 @default.
- W2790494341 hasConcept C185592680 @default.
- W2790494341 hasConcept C192562407 @default.
- W2790494341 hasConcept C198531522 @default.
- W2790494341 hasConcept C2779673822 @default.
- W2790494341 hasConcept C34736171 @default.
- W2790494341 hasConcept C41008148 @default.
- W2790494341 hasConcept C43617362 @default.
- W2790494341 hasConcept C75553542 @default.
- W2790494341 hasConcept C76155785 @default.
- W2790494341 hasConcept C8673954 @default.
- W2790494341 hasConcept C87892846 @default.
- W2790494341 hasConcept C92444450 @default.
- W2790494341 hasConcept C9390403 @default.
- W2790494341 hasConceptScore W2790494341C111472728 @default.