Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790498740> ?p ?o ?g. }
- W2790498740 abstract "Abstract Reverse engineering of gene regulatory networks from time series gene-expression data is a challenging problem, not only because of the vast sets of candidate interactions but also due to the stochastic nature of gene expression. To avoid the computational cost of large-scale simulations, a two-step Gaussian process interpolation based gradient matching approach has been proposed to solve differential equations approximately. Based on this gradient matching approach, we evaluate the fits of parametric as well as non-parametric candidate models to the data under various settings for different inference objectives. We also use model averaging, based on the Bayesian Information Criterion (BIC), in order to combine the different inferences. We found that parametric methods can provide comparable, and often improved inference compared to non-parametric methods; the latter, however, require no kinetic information and are computationally more efficient. The code used in this work is available at https://github.com/ld2113/Final-Project ." @default.
- W2790498740 created "2018-03-29" @default.
- W2790498740 creator A5007234030 @default.
- W2790498740 creator A5042789303 @default.
- W2790498740 creator A5044671136 @default.
- W2790498740 date "2018-01-25" @default.
- W2790498740 modified "2023-10-18" @default.
- W2790498740 title "Parametric and Non-parametric Gradient Matching for Network Inference" @default.
- W2790498740 cites W1905513873 @default.
- W2790498740 cites W1963670229 @default.
- W2790498740 cites W1976526581 @default.
- W2790498740 cites W1983030487 @default.
- W2790498740 cites W1989466762 @default.
- W2790498740 cites W2007105977 @default.
- W2790498740 cites W2015059346 @default.
- W2790498740 cites W2024921867 @default.
- W2790498740 cites W2032619610 @default.
- W2790498740 cites W2061505806 @default.
- W2790498740 cites W2070589046 @default.
- W2790498740 cites W2092692908 @default.
- W2790498740 cites W2102892614 @default.
- W2790498740 cites W2106927126 @default.
- W2790498740 cites W2109384743 @default.
- W2790498740 cites W2126602684 @default.
- W2790498740 cites W2131398297 @default.
- W2790498740 cites W2139997707 @default.
- W2790498740 cites W2146230717 @default.
- W2790498740 cites W2158698691 @default.
- W2790498740 cites W2161062218 @default.
- W2790498740 cites W2166303358 @default.
- W2790498740 cites W2166920812 @default.
- W2790498740 cites W2168175751 @default.
- W2790498740 cites W2171074980 @default.
- W2790498740 cites W2518828632 @default.
- W2790498740 cites W2619381903 @default.
- W2790498740 cites W2949681703 @default.
- W2790498740 cites W4206212643 @default.
- W2790498740 cites W4211049957 @default.
- W2790498740 cites W4230472480 @default.
- W2790498740 doi "https://doi.org/10.1101/254003" @default.
- W2790498740 hasPublicationYear "2018" @default.
- W2790498740 type Work @default.
- W2790498740 sameAs 2790498740 @default.
- W2790498740 citedByCount "2" @default.
- W2790498740 countsByYear W27904987402018 @default.
- W2790498740 crossrefType "posted-content" @default.
- W2790498740 hasAuthorship W2790498740A5007234030 @default.
- W2790498740 hasAuthorship W2790498740A5042789303 @default.
- W2790498740 hasAuthorship W2790498740A5044671136 @default.
- W2790498740 hasBestOaLocation W27904987401 @default.
- W2790498740 hasConcept C104114177 @default.
- W2790498740 hasConcept C105795698 @default.
- W2790498740 hasConcept C107673813 @default.
- W2790498740 hasConcept C11413529 @default.
- W2790498740 hasConcept C117251300 @default.
- W2790498740 hasConcept C121332964 @default.
- W2790498740 hasConcept C137800194 @default.
- W2790498740 hasConcept C154945302 @default.
- W2790498740 hasConcept C160234255 @default.
- W2790498740 hasConcept C163716315 @default.
- W2790498740 hasConcept C165064840 @default.
- W2790498740 hasConcept C24574437 @default.
- W2790498740 hasConcept C2776214188 @default.
- W2790498740 hasConcept C33923547 @default.
- W2790498740 hasConcept C41008148 @default.
- W2790498740 hasConcept C61326573 @default.
- W2790498740 hasConcept C62520636 @default.
- W2790498740 hasConceptScore W2790498740C104114177 @default.
- W2790498740 hasConceptScore W2790498740C105795698 @default.
- W2790498740 hasConceptScore W2790498740C107673813 @default.
- W2790498740 hasConceptScore W2790498740C11413529 @default.
- W2790498740 hasConceptScore W2790498740C117251300 @default.
- W2790498740 hasConceptScore W2790498740C121332964 @default.
- W2790498740 hasConceptScore W2790498740C137800194 @default.
- W2790498740 hasConceptScore W2790498740C154945302 @default.
- W2790498740 hasConceptScore W2790498740C160234255 @default.
- W2790498740 hasConceptScore W2790498740C163716315 @default.
- W2790498740 hasConceptScore W2790498740C165064840 @default.
- W2790498740 hasConceptScore W2790498740C24574437 @default.
- W2790498740 hasConceptScore W2790498740C2776214188 @default.
- W2790498740 hasConceptScore W2790498740C33923547 @default.
- W2790498740 hasConceptScore W2790498740C41008148 @default.
- W2790498740 hasConceptScore W2790498740C61326573 @default.
- W2790498740 hasConceptScore W2790498740C62520636 @default.
- W2790498740 hasLocation W27904987401 @default.
- W2790498740 hasLocation W27904987402 @default.
- W2790498740 hasOpenAccess W2790498740 @default.
- W2790498740 hasPrimaryLocation W27904987401 @default.
- W2790498740 hasRelatedWork W2329689257 @default.
- W2790498740 hasRelatedWork W2468734068 @default.
- W2790498740 hasRelatedWork W2555699918 @default.
- W2790498740 hasRelatedWork W2685130528 @default.
- W2790498740 hasRelatedWork W2736297450 @default.
- W2790498740 hasRelatedWork W2795419791 @default.
- W2790498740 hasRelatedWork W2796919988 @default.
- W2790498740 hasRelatedWork W2807156663 @default.
- W2790498740 hasRelatedWork W2951336346 @default.
- W2790498740 hasRelatedWork W2972597983 @default.
- W2790498740 hasRelatedWork W2997337403 @default.
- W2790498740 hasRelatedWork W2997359407 @default.